Skip to main content
Log in

Hindlimb movement modulates the activity of rostral fastigial nucleus neurons that process vestibular input

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Integration of vestibular and proprioceptive afferent information within the central nervous system is a critical component of postural regulation. We recently demonstrated that labyrinthine and hindlimb signals converge onto vestibular nucleus neurons, such that hindlimb movement modulates the activity of these cells. However, it is unclear whether similar convergence of hindlimb and vestibular signals also occurs upstream from the vestibular nuclei, particularly in the rostral fastigial nucleus (rFN). We tested the hypothesis that rFN neurons have similar responses to hindlimb movement as vestibular nucleus neurons. Recordings were obtained from 53 rFN neurons that responded to hindlimb movement in decerebrate cats. In contrast to vestibular nucleus neurons, which commonly encoded the direction of hindlimb movement (81 % of neurons), few rFN neurons (21 %) that responded to leg movement encoded such information. Instead, most rFN neurons responded to both limb flexion and extension. Half of the rFN neurons whose activity was modulated by hindlimb movement received convergent vestibular inputs. These results show that rFN neurons receive somatosensory inputs from the hindlimb and that a subset of rFN neurons integrates vestibular and hindlimb signals. Such rFN neurons likely perform computations that participate in maintenance of balance during upright stance and movement. Although vestibular nucleus neurons are interconnected with the rFN, the dissimilarity of responses of neurons sensitive to hindlimb movement in the two regions suggests that they play different roles in coordinating postural responses during locomotion and other movements which entail changes in limb position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arshian MS, Hobson CE, Catanzaro MF et al (2014) Vestibular nucleus neurons respond to hindlimb movement in the decerebrate cat. J Neurophysiol 111:2423–2432. doi:10.1152/jn.00855.2013

    Article  PubMed Central  PubMed  Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Res 286:299–322

    Article  CAS  PubMed  Google Scholar 

  • Batton RR 3rd, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305. doi:10.1002/cne.901740206

    Article  PubMed  Google Scholar 

  • Berman AI (1968) The brain stem of the cat. University of Wisconsin Press, Madison

    Google Scholar 

  • Bosco G, Poppele RE (1993) Broad directional tuning in spinal projections to the cerebellum. J Neurophysiol 70:863–866

    CAS  PubMed  Google Scholar 

  • Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81:539–568

    CAS  PubMed  Google Scholar 

  • Brooks JX, Cullen KE (2009) Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J Neurosci 29:10499–10511. doi:10.1523/JNEUROSCI.1937-09.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catanzaro MF, Miller DJ, Cotter LA, McCall AA, Yates BJ (2014) Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness. Exp Brain Res 232:2581–2589. doi:10.1007/s00221-014-3898-9

    Article  PubMed  Google Scholar 

  • Destefino VJ, Reighard DA, Sugiyama Y et al (2011) Responses of neurons in the rostral ventrolateral medulla to whole body rotations: comparisons in decerebrate and conscious cats. J Appl Physiol 110:1699–1707. doi:10.1152/japplphysiol.00180.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eccles JC, Rantucci T, Sabah NH, Taborikova H (1974a) Somatotopic studies on cerebellar fastigial cells. Exp Brain Res 19:100–118

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Sabah NH, Taborikova H (1974b) Excitatory and inhibitory responses of neurones of the cerebellar fastigial nucleus. Exp Brain Res 19:61–77

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JM, Schwarz D, Kornhuber HH (1966) Convergence and interaction of vestibular and deep somatic afferents upon neurons in the vestibular nuclei of the cat. Acta Otolaryngol 61:168–188

    Article  CAS  PubMed  Google Scholar 

  • Ghelarducci B (1973) Responses of the cerebellar fastigial neurones to tilt. Pflugers Arch 344:195–206

    Article  CAS  PubMed  Google Scholar 

  • Ghelarducci B, Pompeiano O, Spyer KM (1974) Distribution of the neuronal responses to static tilts within the cerebellar fastigial nucleus. Arch Ital Biol 112:126–141

    CAS  PubMed  Google Scholar 

  • Grasso C, Barresi M, Scattina E, Orsini P, Vignali E, Bruschini L, Manzoni D (2011) Tuning of human vestibulospinal reflexes by leg rotation. Hum Mov Sci 30:296–313. doi:10.1016/j.humov.2010.07.018

    Article  CAS  PubMed  Google Scholar 

  • Gray C, Perciavalle V, Poppele R (1993) Sensory responses to passive hindlimb joint rotation in the cerebellar cortex of the cat. Brain Res 622:280–284

    Article  CAS  PubMed  Google Scholar 

  • Homma Y, Nonaka S, Matsuyama K, Mori S (1995) Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res 23:89–102

    Article  CAS  PubMed  Google Scholar 

  • Huber J, Grottel K, Mrowczynski W, Krutki P (1999) Spinoreticular neurons in the second sacral segment of the feline spinal cord. Neurosci Res 34:59–65

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Udo M, Mano N, Kawai N (1970) Synaptic action of the fastigiobulbar impulses upon neurones in the medullary reticular formation and vestibular nuclei. Exp Brain Res 11:29–47

    Article  CAS  PubMed  Google Scholar 

  • Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 144:247–257. doi:10.1007/s00221-002-1042-8

    Article  CAS  PubMed  Google Scholar 

  • Kleine JF, Guan Y, Kipiani E, Glonti L, Hoshi M, Buttner U (2004) Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey. J Neurophysiol 91:2090–2100. doi:10.1152/jn.00849.2003

    Article  CAS  PubMed  Google Scholar 

  • Marsden JF, Castellote J, Day BL (2002) Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing. J Physiol 542:323–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsushita M (1999) Projections from the lowest lumbar and sacral-caudal segments to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 404:21–32

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama K, Jankowska E (2004) Coupling between feline cerebellum (fastigial neurons) and motoneurons innervating hindlimb muscles. J Neurophysiol 91:1183–1192. doi:10.1152/jn.00896.2003

    Article  PubMed  Google Scholar 

  • Maunz RA, Pitts NG, Peterson BW (1978) Cat spinoreticular neurons: locations, responses and changes in responses during repetitive stimulation. Brain Res 148:365–379

    Article  CAS  PubMed  Google Scholar 

  • McCall AA, Moy JD, Puterbaugh SR, DeMayo WM, Yates BJ (2013) Responses of vestibular nucleus neurons to inputs from the hindlimb are enhanced following a bilateral labyrinthectomy. J Appl Physiol 114:742–751. doi:10.1152/japplphysiol.01389.2012

    Article  PubMed Central  PubMed  Google Scholar 

  • McKelvey-Briggs DK, Saint-Cyr JA, Spence SJ, Partlow GD (1989) A reinvestigation of the spinovestibular projection in the cat using axonal transport techniques. Anat Embryol 180:281–291

    Article  CAS  PubMed  Google Scholar 

  • Miller DM, Cotter LA, Gandhi NJ et al (2008) Responses of rostral fastigial nucleus neurons of conscious cats to rotations in vertical planes. Neuroscience 155:317–325. doi:10.1016/j.neuroscience.2008.04.042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moy JD, Miller DJ, Catanzaro MF et al (2012) Responses of neurons in the caudal medullary lateral tegmental field to visceral inputs and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 303:R929–R940. doi:10.1152/ajpregu.00356.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orlovsky GN (1972) Activity of vestibulospinal neurons during locomotion. Brain Res 46:85–98

    Article  CAS  PubMed  Google Scholar 

  • Osborn CE, Poppele RE (1992) Parallel distributed network characteristics of the DSCT. J Neurophysiol 68:1100–1112

    CAS  PubMed  Google Scholar 

  • Oscarsson O (1965) Functional organization of the spino- and cuneocerebellar tracts. Physiol Rev 45:495–522

    CAS  PubMed  Google Scholar 

  • Oscarsson O (1969) Termination and functional organization of the dorsal spino-olivocerebellar path. J Physiol 200:129–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    CAS  PubMed  Google Scholar 

  • Schor RH, Angelaki DE (1992) The algebra of neural response vectors. Ann N Y Acad Sci 656:190–204

    Article  CAS  PubMed  Google Scholar 

  • Schor RH, Miller AD, Tomko DL (1984) Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146

    CAS  PubMed  Google Scholar 

  • Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE (2005) Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol 93:853–863. doi:10.1152/jn.00879.2004

    Article  PubMed  Google Scholar 

  • Siebold C, Glonti L, Glasauer S, Buttner U (1997) Rostral fastigial nucleus activity in the alert monkey during three-dimensional passive head movements. J Neurophysiol 77:1432–1446

    CAS  PubMed  Google Scholar 

  • Stanojevic M (1981) Responses of cerebellar fastigial neurons to neck and macular vestibular inputs. Pflugers Arch 391:267–272

    CAS  PubMed  Google Scholar 

  • Stanojevic M, Erway L, Ghelarducci B, Pompeiano O, Willis WD Jr (1980) A comparison of the response characteristics of cerebellar fastigial and vermal cortex neurons to sinusoidal stimulation of macular vestibular receptors. Pflugers Arch 385:95–104

    Article  CAS  PubMed  Google Scholar 

  • Welgampola MS, Colebatch JG (2001) Vestibulospinal reflexes: quantitative effects of sensory feedback and postural task. Exp Brain Res 139:345–353

    Article  CAS  PubMed  Google Scholar 

  • Wilson VJ, Kato M, Thomas RC, Peterson BW (1966) Excitation of lateral vestibular neurons by peripheral afferent fibers. J Neurophysiol 29:508–529

    CAS  PubMed  Google Scholar 

  • Wilson VJ, Uchino Y, Maunz RA, Susswein A, Fukushima K (1978) Properties and connections of cat fastigiospinal neurons. Exp Brain Res 32:1–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Danielle Akinsanmi, George Bourdages, Alex Carter, Valerie Casuccio, and Tom Cooper for their contributions to the project. Funding was provided by a Triological Society Research Career Development Award and a Hearing Health Foundation Emerging Research Grant (to A. A. McCall) and by National Institutes of Health Grant R01-DC003732 (to B. J. Yates).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. McCall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCall, A.A., Miller, D.J., Catanzaro, M.F. et al. Hindlimb movement modulates the activity of rostral fastigial nucleus neurons that process vestibular input. Exp Brain Res 233, 2411–2419 (2015). https://doi.org/10.1007/s00221-015-4311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4311-z

Keywords

Navigation