Skip to main content
Log in

Depressing effect of electroacupuncture on the spinal non-painful sensory input of the rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The aim of this study was to explore the effect of electroacupuncture (EA) applied in the Zusanli (ST36) and Sanyinjiao (SP6) points on the N1 component of the cord dorsum potential (CDP) evoked by electrical stimulation of the sural nerve (SU) in the rat. The experiments were performed in 44 Wistar rats (250–300 g) anesthetized with ketamine (100 mg/kg) and xylazine (2 mg/kg). A bilateral laminectomy was performed to expose the L3 to S2 segments of the spinal cord. The SU nerve was exposed and placed on pairs of hook electrodes for electrical stimulation. The N1-CDPs were recorded with three silver-ball electrodes located on the dorsal surface of the L5 to S1 segments. Ipsilateral high and low EA stimulation (100, 2 Hz, 6 mA, 30 min) induced a considerable reduction in the amplitude (45 ± 5.6, 41 ± 6.2 %) of the N1-CDP recorded at the L6 segmental level. Recovery of the N1-CDP amplitude occurred approximately 1–3 s after EA. Sectioning of the saphenous and superficial peroneal nerves reduced the depressing effect provoked by the EA stimulation (18.7 ± 1.3, 27 ± 3.8 %). Similarly, sectioning of the posterior and anterior tibial, deep peroneal and gastrocnemius nerves partially reduced the effect provoked by EA (11 ± 1.5, 9.8 ± 1.1, 12.6 ± 1.9 %). Intravenous picrotoxin (1 mg/kg) also reduced the action of low and high EA (23 ± 4.8, 27 ± 5.2 %). It is suggested that EA stimulation depresses non-painful sensory pathways through the activation of specific inhibitory pathways that receive modulatory actions from other sensory and muscle afferent inputs in the rat spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes PM, Bloom B, Nahin RL (2008) Complementary and alternative medicine use among adults and children. Natl Health Stat Report 10:1–23

    Google Scholar 

  • Baron R, Saguer M (1993) Postherpetic neuralgia. Are C-nociceptors involved in signaling and maintenance of tactile allodynia? Brain 116:1477–1496

    Article  PubMed  Google Scholar 

  • Bernhard CG (1953) The spinal cord potentials in leads form the cord dorsum in relation to peripheral source of afferent stimulation. Acta Physiol Scand 29:1–29

    Article  Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186

    CAS  PubMed  Google Scholar 

  • Campero M, Serra J, Marchettini P, Ochoa JL (1998) Impulse generation and autoexcitation in single myelinated afferent fibers in patients with peripheral neuropathy and positive sensory symptoms. Muscle Nerve 21:1661–1667

    Article  CAS  PubMed  Google Scholar 

  • Chung JM, Fang ZR, Hori Y, Lee KH, Endo K, Willis WD (1984a) Prolongated inhibition of primate spinothalamic tracks cells by peripheral nerve stimulation. Pain 19:259–275

    Article  CAS  PubMed  Google Scholar 

  • Chung JM, Lee KH, Hori Y, Endo K, Willis WD (1984b) Factors influencing peripheral stimulation produced inhibition of primate spinothalamic tracs cells. Pain 19:277–293

    Article  CAS  PubMed  Google Scholar 

  • Collins JG (1986) Effects of ketamine on low intensity tactile sensory input are not dependent upon a spinal site of action. Anesth Analg 65(11):1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Coombs JS, Curtis DR, Landgren S (1956) Spinal cord potentials generated by impulses in muscle and cutaneous afferent fibers. J Neurophysiol 19:452–467

    CAS  PubMed  Google Scholar 

  • De LaTorre S, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J, Villanueva L, Condés-Lara M (2009) Paraventricular oxytocinergic hypothalamic prevention or interruption of long-term potentiation in dorsal horn nociceptive neurons: electrophysiological and behavioral evidence. Pain 144:320–328

    Article  Google Scholar 

  • Devor M (2009) Ectopic discharge in Aβ afferents as a source of neuropathic pain. Exp Brain Res 196:115–128

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD (1963) Depolarization of the central terminals of cutaneous afferent fibers. J Neurophysiol 26:646–661

    Google Scholar 

  • González SQ, Alegría BS, Olmos JC, Jiménez-Estrada I (2011) Effect of chronic undernourishment on the cord dorsum potentials and the primary afferent depolarization evoked by cutaneous nerves in the rat spinal cord. Brain Res Bull 85:68–74

    Article  PubMed  Google Scholar 

  • Huang C, Wang Y, Han JS, Wan Y (2002) Characteristics of electroacupuncture-induced analgesia in mice: variation with strain, frequency, intensity and opioid involvement. Brain Res 945(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Li HT, Shi YS, Han JS, Wan Y (2004) Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain. Neurosci Lett 368:327–331

    Article  CAS  PubMed  Google Scholar 

  • Hwang BG, Min BI, Kim JH, Na HS, Park DS (2002) Effects of electroacupuncture on the mechanical allodynia in the rat model of neuropathic pain. Neurosci Lett 320:49–52

    Article  CAS  PubMed  Google Scholar 

  • Jiménez I, Rudomin P, Solodkin M (1987) Mechanisms involved in the depolarization of cutaneous afferents produced by segmental and descending inputs in the cat spinal cord. Exp Brain Res 69:195–207

    Article  PubMed  Google Scholar 

  • Kerr FW, Wilson PR, Nijensohn DE (1978) Acupuncture reduces the trigeminal evoked response in decerebrate cats. Exp Neurol 61:84–95

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Min BI, Na HS, Park DS (2004) Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors. Brain Res 998:230–236

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Roh DH, Yoon SY, Kang SY, Kwon YB, Han HJ, Lee HJ, Choi SM, Ryu YH, Beitz AJ, Lee JH (2006) The anti-inflammatory effects of low- and high-frequency electroacupuncture are mediated by peripheral opioids in a mouse air pouch inflammation model. J Altern Complement Med 12:39–44

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim HY, Chung JM (2011) Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats. J Neurophysiol 105:2050–2057

    Article  PubMed Central  PubMed  Google Scholar 

  • Kremer E, Lev-Tov A (1998) GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord. J Neurophysiol 79:2581–2592

    CAS  PubMed  Google Scholar 

  • Lau WK, Chan WK, Zhang JL, Yung KK, Zhang HQ (2008) Electroacupuncture inhibits cyclooxygenase-2 up regulation in rat spinal cord after spinal nerve ligation. Neuroscience 155:463–468

    Article  CAS  PubMed  Google Scholar 

  • Le Bars D (2002) The whole body receptive field of dorsal horn multireceptive neurons. Brain Res Rev 40:29–44

    Article  PubMed  Google Scholar 

  • Leung L (2012) Neurophysiological basis of acupuncture-induced analgesia—an updated review. J Acupunct Meridian Stud 5:261–270

    Article  PubMed  Google Scholar 

  • Li CY, Zhu LX, Li WM, Ji CF (1993) Relationship between presynaptic depolarization and effect of acupuncture, γ-aminobutyric acid, opioid peptide substance P. Acupunct Res 18:178–182

    CAS  Google Scholar 

  • Lidierth M (2006) Local and diffuse mechanisms of primary afferent depolarization and presynaptic inhibition in the rat spinal cord. J Physiol 576:309–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu XG, Morton CR, Azkue JJ, Zimmermann M, Sandkuhler J (1998) Long-term depression of C-fibre-evoked spinal field potentials by stimulation of primary afferent Aδ-fibres in the adult rat. Eur J Neurosci 10:3069–3075

    Article  CAS  PubMed  Google Scholar 

  • Maslany S, Crockett DP, Egger MD (1992) Organization of cutaneous primary afferent fibers projecting to the dorsal horn in the rat: WGA-HRP versus B-HRP. Brain Res 569:123–135

    Article  CAS  PubMed  Google Scholar 

  • Ochoa JL (1994) Pain mechanisms in neuropathy. Curr Opin Neurol 7:407–414

    Article  CAS  PubMed  Google Scholar 

  • Panneton WM, Gan Q, Juric R (2005) The central termination of sensory fibers from nerves to the gastrocnemius muscle of the rat. Neuroscience 134:175–187

    Article  CAS  PubMed  Google Scholar 

  • Quiroz-Gonzalez S, Guadarrama Olmos J, Segura Alegría B, Jimenez Estrada I (2013) Depressing effect of electroacupuncture on the N1 component of the cord dorsum potential in the rat spinal cord. Abstract Viewer Programe No. 644.28/NN17, Society for Neuroscience, San Diego, California

  • Quiroz-González S, Segura-Alegría B, Guadarrama-Olmos JC, Jiménez-Estrada I (2014) Cord dorsum potentials evoked by electroacupuncture applied to the hind limbs of rats. J Acupunct Meridian Stud 7:25–32

    Article  PubMed  Google Scholar 

  • Quiróz-Gonzalez S, Segura-Alegría B, Olmos JC, Jiménez-Estrada I (2012) The effect of chronic undernourishment on the synaptic depression of cutaneous pathways in the rat spinal cord. Brain Res Bull 89:97–101

    Article  PubMed  Google Scholar 

  • Rudomin P (2007) In search of lost presynaptic inhibition. Exp Brain Res 196:139–151

    Article  Google Scholar 

  • Rudomin P, Hernandez E (2008) Changes in synaptic effectiveness of myelinated joint afferents during capsaicin-induced inflammation of the footpad in the anesthetized cat. Exp Brain Res 187:71–84

    Article  CAS  PubMed  Google Scholar 

  • Rudomin P, Schmidt R (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37

    Article  CAS  PubMed  Google Scholar 

  • Sandkuhler J, Chen JG, Cheng G, Randic M (1997) Low-Frequency stimulation of afferent Aδ-Fibers induces long term depression at primary afferent synapses with substantia gelatinosa neurons in the rat. J Neurosci 17:6483–6491

    CAS  PubMed  Google Scholar 

  • Vickers AJ, Cronin AM, Maschino AC, Lewith G, MacPherson H, Foster NE et al (2012) Acupuncture for chronic pain: individual patient data meta-analysis. Arch Intern Med 172:1444–1453

    Article  PubMed Central  PubMed  Google Scholar 

  • Willis WD, Weir MA, Skinner RD, Bryan RN (1973) Differential distribution of spinal cord field potentials. Exp Brain Res 17:169–176

    Article  CAS  PubMed  Google Scholar 

  • Xing GG, Liu FY, Qu XX, Han JS, Wan Y (2007) Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol 208:323–332

    Article  PubMed  Google Scholar 

  • Yin CS, Jeong HS, Park HJ, Baik Y, Yoon MH, Choi CB, Koh HG (2008) A proposed transpositional acupoint system in a mouse and rat model. Res Vet Sci 84:159–165

    Article  PubMed  Google Scholar 

  • Yin CS, Shim BS, Lee H, Choi SH (2010) Acupuncture in accomplishing ‘health for all’. Neurol Res 32:18–21

    Article  PubMed  Google Scholar 

  • Zhang YQ, Ji GC, Wu GC, Zhao ZQ (2003) Kynurenic acid enhances electroacupuncture analgesia in normal and carrageenan-injected rats. Brain Res 966:300–307

    Article  CAS  PubMed  Google Scholar 

  • Zhang RX, Lao L, Wang L, Liu B, Wang X, Ren K, Berman BM (2004) Involvement of opioid receptors in electroacupuncture-produced anti-hyperalgesia in rats with peripheral inflammation. Brain Res 1020:12–17

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Lao L, Ren K, Berman BM (2014) Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology 120:482–503

    Article  PubMed  Google Scholar 

  • Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85:355–375

    Article  PubMed  Google Scholar 

  • Zhou F, Huang D, Xia Y (2010) Neuroanatomic basis of acupuncture points. In: Xia Y, Cao XD, Wu GC, Cheng JS (eds) Acupuncture therapy for neurological diseases: a neurobiological view. Springer, Berlin, pp 32–80

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank American Journal Experts for editing the English of this text, José Carlos Guadarrama Olmos for technical assistance and to Enrique Velazquez and Porfirio Reyes for their programming assistance. This work was partially supported by fellowships granted to I. Jiménez-Estrada and B. Segura-Alegría from the Sistema Nacional de Investigadores. S. Quiroz-Gonzalez was partially supported by PROMEP (No. 103.5-13-6729) and SNI-CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Quiroz-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiroz-González, S., Segura-Alegría, B. & Jiménez-Estrada, I. Depressing effect of electroacupuncture on the spinal non-painful sensory input of the rat. Exp Brain Res 232, 2721–2729 (2014). https://doi.org/10.1007/s00221-014-3965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3965-2

Keywords

Navigation