Skip to main content
Log in

The role of the dorsolateral funiculi in the pain relieving effect of spinal cord stimulation: a study in a rat model of neuropathic pain

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Activation of the dorsal columns is relayed to supraspinal centers, involved in pain modulation, probably via the descending fibers in the dorsolateral funiculi (DLF). The present study examines the role of the DLF in the attenuation of pain-related signs by spinal cord stimulation (SCS). Several groups of rats were subjected to nerve injury and to chronic bilateral DLF lesions at C5–7 level. In each animal, two sets of miniature electrodes were implanted, a caudal system placed in the dorsal epidural space at low thoracic level and another implanted over the dorsal column nuclei, rostral to the lesions. Stimulation (50 Hz, 0.2 ms; 70 % of motor threshold) was applied for 5 min via either of the electrodes. Behavioral tests were used to assess the effects of SCS on the nerve injury-induced mechanical and cold hypersensitivity and heat hyperalgesia. Prior to application of SCS, antagonists to either of GABAA or B, 5-HT1 or 1–2 or α/β-adrenergic receptors were injected i.p. Both stimulations produced comparable decreases (80–90 % of the control) of neuropathic manifestations in rats with intact spinal cords. DLF lesions attenuated the effects of both types of stimulation by about 50 %. Pretreatment with receptor antagonists differentially counteracted the effects of rostral and caudal stimulation; the inhibition with rostral stimulation generally being more prominently influenced. These results provide further support to the notion of important involvement of brainstem pain modulating centers in the effects of SCS. A major component of the inhibitory spinal–supraspinal–spinal loop is mediated by fibers running in the DLF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SCS:

Spinal cord stimulation

DLF:

Dorsolateral funiculi

DCNS:

Dorsal column nuclei stimulation

SNI:

Spared nerve injury

MT:

Motor threshold

VF:

von Frey

PWD:

Paw withdrawal duration

PWL:

Paw withdrawal latency

RVM:

Rostral ventromedial medulla

VFL:

Ventrolateral funiculus

References

  • Akada Y, Mori R, Kato Y, Yamasaki F, Mochizuki H (2005) Analgesic properties of the novel compound M43068 in rat models of acute and neuropathic pain. Eur J Pharmacol 523:46–53

    Article  CAS  PubMed  Google Scholar 

  • Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, Linderoth B, Saadé NE (2012) Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 215:196–208

    Article  CAS  PubMed  Google Scholar 

  • Basbaum AI, Clanton CH, Fields HL (1976) Opiate and stimulus-produced analgesia: functional anatomy of a medullospinal pathway. Proc Natl Acad Sci USA 73:4685–4688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178:209–224

    Article  CAS  PubMed  Google Scholar 

  • Burgess SE, Gardell LR, Ossipov MH, Malan TP Jr, Vanderah TW, Lai J, Porreca F (2002) Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci 22:5129–5136

    CAS  PubMed  Google Scholar 

  • Choi Y, Yoon YW, Na HS, Kim SH, Chung JM (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59:369–376

    Article  CAS  PubMed  Google Scholar 

  • Coimbra NC, Castro-Souza C, Segato EN, Nora JEP, Herrero CFPS, Tedeschi-Filho W, Garcia-Cairasco N (2001) Post-ictal analgesia: involvement of opioid, serotoninergic and cholinergic mechanisms. Brain Res 888:314–320

    Article  CAS  PubMed  Google Scholar 

  • Condes-Lara M (1998) Different direct pathways of locus coeruleus to medial prefrontal cortex and centrolateral thalamic nucleus: electrical stimulation effects on the evoked responses to nociceptive peripheral stimulation. Eur J Pain 2:15–23

    Article  PubMed  Google Scholar 

  • Cui JG, Linderoth B, Meyerson BA (1996) Effects of spinal cord stimulation on touch-evoked allodynia involve GABAergic mechanisms. An experimental study in the.mononeuropathic rat. Pain 66:287–295

    Article  CAS  PubMed  Google Scholar 

  • Cui JG, Meyerson BA, Sollevi A, Linderoth B (1998) Effect of spinal cord stimulation on tactile hypersensitivity in mononeuropathic rats is potentiated by simultaneous GABA(B) and adenosine receptor activation. Neurosci Lett 247:183–186

    Article  CAS  PubMed  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  CAS  PubMed  Google Scholar 

  • El-Khoury C, Hawwa N, Baliki M, Atweh SF, Jabbur SJ, Saadé NE (2002) Attenuation of neuropathic pain by segmental and supraspinal activation of the dorsal column system in awake rats. Neuroscience 112:541–553

    Article  CAS  PubMed  Google Scholar 

  • Gilbert AK, Franklin KBJ (2001) GABAergic modulation of descending inhibitory systems from the rostral ventromedial medulla (RVM). Dose-response analysis of nociception and neurological deficits. Pain 90:25–36

    Article  CAS  PubMed  Google Scholar 

  • Guan Y (2012) Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep 16:217–225

    Article  PubMed  Google Scholar 

  • Heinricher MM, Tortorici V (1994) Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience 63:533–546

    Article  CAS  PubMed  Google Scholar 

  • Janssen SP, Gerard S, Raijmakers ME, Truin M, Van Kleef M, Joosten EA (2012) Decreased intracellular GABA levels contribute to spinal cord stimulation-induced analgesia in rats suffering from painful peripheral neuropathy: the role of KCC2 and GABAA receptor-mediated inhibition. Neurochem Int 60:21–30

    Article  CAS  PubMed  Google Scholar 

  • Jones SL, Gebhart GF (1987) Spinal pathways mediating tonic, coerulospinal and raphe-spinal descending inhibition in the rat. J Neurophysiol 58:138–159

    CAS  PubMed  Google Scholar 

  • Koyama N, Hanai F, Yokota T (1998) Does intravenous administration of GABAA receptor antagonists induce both descending antinociception and touch-evoked allodynia? Pain 76:327–336

    Article  CAS  PubMed  Google Scholar 

  • Linderoth B, Meyerson BA (2013) Spinal cord and brain stimulation. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (eds) Wall and Melzack´s textbook of pain. Elsevier/Saunders, Philadelphia, pp 570–591

    Google Scholar 

  • Lovick TA, West DC, Wolstencroft JH (1978) Bulbar raphe neurons with projections to the spinal trigeminal nucleus and the lumbar cord in the cat. J Physiol London 277:61–62

    Google Scholar 

  • Mantovani M, Kaster MP, Pertile R, Calixto JB, Rodrigues AL, Santos ARS (2006) Mechanisms involved in the antinociception caused by melatonin in mice. J Pineal Res 41:382–389

    Article  CAS  PubMed  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971–979

    Article  CAS  PubMed  Google Scholar 

  • Meyerson BA, Linderoth B (2006) Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage 31:S6–S12

    Article  PubMed  Google Scholar 

  • Meyerson BA, Herregodts P, Linderoth B, Ren B (1994) An experimental animal model of spinal cord stimulation for pain. Stereotact Funct Neurosurg 62:256–262

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  PubMed  Google Scholar 

  • Mokha SS, McMillan JA, Iggo A (1986) Pathways mediating descending control of spinal nociceptive transmission from nuclei locus coeruleus (LC) and raphe magnus (NMR) in the cat. Exp Brain Res 61:597–606

    Article  CAS  PubMed  Google Scholar 

  • Moreau JL, Fields HL (1986) Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res 397:37–46

    Article  CAS  PubMed  Google Scholar 

  • Nashold BS, Somjen G, Friedman H (1972) Paresthesias and EEG potentials evoked by stimulation of the dorsal funiculi in man. Exp Neurol 36:273–287

    Article  CAS  PubMed  Google Scholar 

  • Nyquist JK, Greenhoot JH (1973) Responses evoked from the thalamic centrum medianum by painful input: suppression by dorsal funiculus conditioning. Exp Neurol 39:215–222

    Article  CAS  PubMed  Google Scholar 

  • Ossipov MH, Sun H, Malan TP, Lai J, Porreca F (2000) Mediation of spinal nerve injury induced tactile allodynia by descending facilitatory pathways in the dorsolateral funiculus in rats. Neurosci Lett 20:129–132

    Article  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Reddy SVR, Maderdrut JL, Yaksh TL (1980) Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther 213:525–533

    CAS  PubMed  Google Scholar 

  • Ren B, Linderoth B, Meyerson BA (1996) Effects of spinal cord stimulation on the flexor reflex and involvement of supraspinal mechanisms: an experimental study in mononeuropathic rats. J Neurosurg 84:244–249

    Article  CAS  PubMed  Google Scholar 

  • Roberts MHT, Rees H (1986) The antinociceptive effects of stimulating the pretectal nucleus of the rat. Pain 25:83–93

    Article  CAS  PubMed  Google Scholar 

  • Saadé NE, Jabbur SJ (2008) Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 86:22–47

    Article  PubMed  Google Scholar 

  • Saadé NE, Jundi AS, Jabbur SJ, Banna NR (1982) Dorsal column input to inferior raphé centralis neurons. Brain Res 250:345–348

    Article  PubMed  Google Scholar 

  • Saadé NE, Salibi NA, Banna NR, Towe AL, Jabbur SJ (1983) Spinal input pathways affecting the medullary gigantocellular reticular nucleus. Exp Neurol 80:582–600

    Article  PubMed  Google Scholar 

  • Saadé NE, Tabet MS, Atweh SF, Jabbur SJ (1984) Modulation of segmental mechanisms by activation of a dorsal column brainstem spinal loop. Brain Res 310:180–184

    Article  PubMed  Google Scholar 

  • Saadé NE, Tabet MS, Banna NR, Atweh SF, Jabbur SJ (1985) Inhibition of nociceptive evoked activity in spinal neurons through a dorsal column-brainstem-spinal loop. Brain Res 339:115–118

    Article  PubMed  Google Scholar 

  • Saadé NE, Tabet MS, Soueidan SA, Bitar M, Atweh SF, Jabbur SJ (1986) Supraspinal modulation of nociception in awake rats by stimulation of the dorsal column nuclei. Brain Res 369:307–310

    Article  PubMed  Google Scholar 

  • Saadé NE, Atweh SF, Jabbur SJ, Wall PD (1990) Effects of lesions in the anterolateral columns and dorsolateral funiculi on self-mutilation behavior in rats. Pain 42:313–321

    Article  PubMed  Google Scholar 

  • Saadé NE, Atweh SF, Privat A, Jabbur SJ (1999) Inhibitory effects from various types of dorsal column and raphe magnus stimulations on nociceptive withdrawal flexion reflexes. Brain Res 846:72–86

    Article  PubMed  Google Scholar 

  • Saadé NE, Baliki MN, El-Khoury C, Hawwa NN, Atweh SF, Apkarian AV, Jabbur SJ (2002) The role of the dorsal columns in neuropathic behavior: evidence for plasticity and non specificity. Neuroscience 115:403–413

    Article  PubMed  Google Scholar 

  • Saadé NE, Al Amin H, Chalouhi S, Abdel Baki S, Jabbur SJ, Atweh SF (2006) Spinal pathways involved in supraspinal modulation of neuropathic manifestations in rats. Pain 126:280–293

    Article  PubMed  Google Scholar 

  • Saadé NE, Al Amin H, Tchachaghian S, Jabbur SJ, Atweh SF (2010) Alteration of GABAergic and glycinergic mechanisms by lidocaine injection in the rostral ventromedial medulla of neuropathic rats. Pain 149:89–99

    Article  PubMed  Google Scholar 

  • Saadé NE, Al Amin HA, Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Atweh SF (2012) Brainstem injection of lidocaine releases the descending pain-inhibitory mechanisms in a rat model of mononeuropathy. Exp Neurol 237:180–190

    Article  PubMed  Google Scholar 

  • Salibi NA, Saadé NE, Banna NR, Jabbur SJ (1980) Dorsal column input into the reticular formation. Nature 288:481–483

    Article  CAS  PubMed  Google Scholar 

  • Sandkuhler J, Fu QG, Zimmermann M (1987) Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus Raphé magnus are separate in the cat. J Neurophysiol 58:327–341

    CAS  PubMed  Google Scholar 

  • Shafizadeh M, Semnanian S, Zarrindast MR, Hashemi B (1997) Involvement of GABAB receptors in the antinociception induced by baclofen in the formalin test. Gen Pharmacol Vasc Syst 28:611–615

    Article  CAS  Google Scholar 

  • Song Z, Ultenius C, Meyerson BA, Linderoth B (2009) Pain relief by spinal cord stimulation involves serotonergic mechanisms: an experimental study in a rat model of mononeuropathy. Pain 147:241–248

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Meyerson BA, Linderoth B (2011) Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain 152:1666–1673

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Ansah OB, Meyerson BA, Pertovaara A, Linderoth B (2013a) The rostro ventromedial medulla is engaged in the effects of spinal cord stimulation in a rodent model of neuropathic pain. Neuroscience 247:133–144

    Article  Google Scholar 

  • Song Z, Ansah OB, Meyerson BA, Pertovaara A, Linderoth B (2013b) Exploration of supraspinal mechanisms in effects of spinal cord stimulation: role of the locus coeruleus. Neuroscience 253:426–434

    Article  CAS  PubMed  Google Scholar 

  • Stiller CO, Linderoth B, O’Connor WT, Franck J, Falkenberg T, Ungerstedt U, Brodin E (1995) Repeated spinal cord stimulation decreases the extracellular level of gamma-aminobutyric acid in the periaqueductal gray matter of freely moving rats. Brain Res 699:231–241

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Matsumoto Y, Murakami T, Hisa Y, Ibata Y (1996) The origins of catecholaminergic innervation in the rostral ventromedial medulla oblongata of the rat. Neurosci Lett 207:53–56

    Article  CAS  PubMed  Google Scholar 

  • Tsuruoka M, Maeda M, Nagasawa I, Inoue T (2004) Spinal pathways mediating coeruleospinal antinociception in the rat. Neurosci Lett 362:236–239

    Article  CAS  PubMed  Google Scholar 

  • Ultenius C, Song Z, Lin P, Meyerson BA, Linderoth B (2013) Spinal GABAergic mechanisms in the effects of spinal cord stimulation in a rodent model of neuropathic pain: is GABA synthesis involved? Neuromodulation 16:114–120

    Article  PubMed  Google Scholar 

  • Villanueva L, Chitour D, Le Bars D (1986) Involvement of the dorsolateral funiculus in the descending spinal projections responsible for diffuse noxious inhibitory controls in the rat. J Neurophysiol 56:1185–1195

    CAS  PubMed  Google Scholar 

  • Voisin DL, Guy N, Chalus M, Dallel R (2005) Nociceptive stimulation activates locus coeruleus neurones projecting to the somatosensory thalamus in the rat. J Physiol 566:929–937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wall PD, Bery J, Saadé NE (1988) Effects of lesion to rat spinal cord lamina I cell projection pathways on reactions to acute and chronic noxious stimuli. Pain 35:327–339

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Viisanen H, Pertovaara A (2009) Descending modulation of neuropathic hypersensitivity by dopamine D2 receptors in or adjacent to the hypothalamic A11 cell group. Pharamacol Res 59:355–363

    Article  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigation of experimental pain in conscious animals. Pain 16:109–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sawsan Sharrouf and Bassem Najm for their technical assistance. This work was supported by a grant from the Swedish Research Council. Formal approval to conduct the experiments described has been obtained from the Animal Care Facility at the American University of Beirut and could be provided upon request. All efforts were made to minimize the number of animals used and their suffering.

Conflict of interest

There are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Saadé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadé, N.E., Barchini, J., Tchachaghian, S. et al. The role of the dorsolateral funiculi in the pain relieving effect of spinal cord stimulation: a study in a rat model of neuropathic pain. Exp Brain Res 233, 1041–1052 (2015). https://doi.org/10.1007/s00221-014-4180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4180-x

Keywords

Navigation