Skip to main content
Log in

Centrifugal regulation of a task-relevant somatosensory signal triggering voluntary movement without a preceding warning signal

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A warning signal followed by an imperative signal generates anticipatory and preparatory activities, which regulate sensory evoked neuronal activities through a top-down centrifugal mechanism. The present study investigated the centrifugal regulation of neuronal responses evoked by a task-relevant somatosensory signal, which triggers a voluntary movement without a warning signal. Eleven healthy adults participated in this study. Electrical stimulation was delivered to the right median nerve at a random interstimulus interval (1.75–2.25 s). The participants were instructed to extend the second digit of the right hand as fast as possible when the electrical stimulus was presented (ipsilateral reaction condition), or extend that of the left hand (contralateral reaction condition). They also executed repetitively extension of the right second digit at a rate of about 0.5 Hz, irrespective of electrical stimulation (movement condition), to count silently the number of stimuli (counting condition). In the control condition, they had no task to perform. The amplitude of short-latency somatosensory evoked potentials, the central P25, frontal N30, and parietal P30, was significantly reduced in both movement and ipsilateral reaction conditions compared to the control condition. The amplitude of long-latency P80 was significantly enhanced only in the ipsilateral reaction condition compared to the control, movement, contralateral reaction, and counting conditions. The long-latency N140 was significantly enhanced in both movement and ipsilateral reaction conditions compared to the control condition. In conclusion, short- and long-latency neuronal activities evoked by task-relevant somatosensory signals were regulated differently through a centrifugal mechanism even when the signal triggered a voluntary movement without a warning signal. The facilitation of activities at a latency of around 80 ms is associated with gain enhancement of the task-relevant signals from the body part involved in the action, whereas that at a latency of around 140 ms is associated with unspecific gain regulation generally induced by voluntary movement. These may be dissociated from the simple effect of directing attention to the stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alegre M, Gurtubay IG, Labarga A, Iriarte J, Malanda A, Artieda J (2003) Alpha and beta oscillatory changes during stimulus-induced movement paradigms: effect of stimulus predictability. Neuroreport 14:381–385

    Article  PubMed  Google Scholar 

  • Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, Babiloni F (1999) Human movement-related potentials vs desynchronization of EEG alpha rhythm. A high-resolution EEG study. Neuroimage 10:658–665

    Article  PubMed  CAS  Google Scholar 

  • Barry RJ, Kirkaikul S, Hodder D (2000) EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. Int J Psychophysiol 39:39–50

    Article  PubMed  CAS  Google Scholar 

  • Başar E (1980) EEG-brain dynamics. Relation between EEG and brain evoked potentials. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Başar E, Stampfer HG (1985) Important associations among EEG-dynamics, event-related potentials, short-term memory and learning. Int J Neurosci 26:161–180

    PubMed  Google Scholar 

  • Bastiaansen MCM, Brunia CHM (2001) Anticipatory attention: an event-related desynchronization approach. Int J Psychophysiol 43:91–107

    Article  PubMed  CAS  Google Scholar 

  • Böcker KBE, Forget R, Brunia CHM (1993) The modulation of somatosensory evoked potentials during the foreperiod of a forewarned reaction time task. Electroencephalogr Clin Neurophysiol 88:105–117

    Article  PubMed  Google Scholar 

  • Brandt ME, Jansen BH, Carbonari JP (1991) Pre-stimulus spectral EEG patterns and the visual evoked response. Electroencephalogr Clin Neurophysiol 80:16–20

    Article  PubMed  CAS  Google Scholar 

  • Chapman CE, Jiang W, Lamarre Y (1988) Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res 72:316–334

    Article  PubMed  CAS  Google Scholar 

  • Cheron G, Borenstein S (1987) Specific gating of the early somatosensory evoked potentials during active movement. Electroencephalogr Clin Neurophysiol 67:537–548

    Article  PubMed  CAS  Google Scholar 

  • Cheron G, Borenstein S (1991) Gating of the early components of the frontal and parietal somatosensory evoked potentials in different sensory-motor interference modalities. Electroencephalogr Clin Neurophysiol 80:522–530

    Article  PubMed  CAS  Google Scholar 

  • Cohen LG, Starr A (1987) Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man. Brain 110:457–467

    Google Scholar 

  • Desmedt JE, Robertson D (1977) Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol (Lond) 271:761–782

    CAS  Google Scholar 

  • Eimer M, Forster B (2003) The spatial distribution of attentional selectivity in touch: evidence from somatosensory ERP components. Clin Neurophysiol 114:1298–1306

    Article  PubMed  Google Scholar 

  • Garcìa-Larrea L, Lukaszewicz AC, Mauguiere F (1995) Somatosensory responses during selective spatial attention: the N120-to-N140 transition. Psychophysiology 32:526–537

    PubMed  Google Scholar 

  • Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121:1513–1531

    Article  PubMed  Google Scholar 

  • Ghez C, Pisa M (1972) Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res 40:145–151

    Article  PubMed  CAS  Google Scholar 

  • Giblin DR (1964) Somatosensory evoked potentials in healthy subjects and in patients with lesions of the nervous system. Ann NY Acad Sci 112:93–142

    PubMed  CAS  Google Scholar 

  • Hamada Y, Okita H, Suzuki R (2003) Effects of interstimulus interval on attentional modulation of cortical activities in human somatosensory areas. Clin Neurophysiol 114:548–555

    Article  PubMed  Google Scholar 

  • Hoshiyama M, Sheean G (1998) Changes of somatosensory evoked potentials preceding rapid voluntary movement in Go/No-go choice reaction time task. Brain Res Cogn Brain Res 7:137–142

    Article  PubMed  CAS  Google Scholar 

  • Huang MX, Aine C, Davis L, Butman J, Christner R, Weisend M, Stephen J, Meyer J, Silveri J, Herman J, Lee RR (2000) Sources on the anterior and posterior banks of the central sulcus identified from magnetic somatosensory evoked responses using multistart spatio-temporal localization. Hum Brain Mapp 11:59–76

    Article  PubMed  CAS  Google Scholar 

  • Huttunen J, Hömberg V (1991) Modification of cortical somatosensory evoked potentials during tactile exploration and simple active and passive movements. Electroencephalogr Clin Neurophysiol 81:216–223

    Article  PubMed  CAS  Google Scholar 

  • Huttunen J, Wikstrom H, Korvenoja A, Seppalainen AM, Aronen H, Ilmoniemi RJ (1996) Significance of the second somatosensory cortex in sensorimotor integration: enhancement of sensory responses during finger movements. Neuroreport 7:1009–1012

    PubMed  CAS  Google Scholar 

  • Jasiukaitis P, Hakarem G (1988) The effect of prestimulus alpha activity on the P300. Psychophysiology 25:157–165

    PubMed  CAS  Google Scholar 

  • Jiang W, Chapman CE, Lamarre Y (1990) Modulation of somatosensory evoked responses in the primary somatosensory cortex produced by intracortical microstimulation of the motor cortex in the monkey. Exp Brain Res 80:333–344

    Article  PubMed  CAS  Google Scholar 

  • Jones SJ (1981) An ‘interference’ approach to the study of somatosensory evoked potentials in man. Electroencephalogr Clin Neurophysiol 52:517–530

    Article  PubMed  CAS  Google Scholar 

  • Jones SJ, Halonen J-P, Shawkat F (1989) Centrifugal and centripetal mechanisms involved in the ‘gating’ of cortical SEPs during movement. Electroencephalogr Clin Neurophysiol 74:36–45

    Article  PubMed  CAS  Google Scholar 

  • Josiassen RC, Shagass C, Roemer RA, Ercegovac DV, Straumanis JJ (1982) Somatosensory evoked potential changes with a selective attention task. Psychophysiology 19:146–159

    PubMed  CAS  Google Scholar 

  • Kakigi R, Jones SJ (1985) Effects on median nerve SEPs on tactile stimulation applied to adjacent and remote of the body surface. Electroencephalogr Clin Neurophysiol 62:252–265

    Article  PubMed  CAS  Google Scholar 

  • Kakigi R, Koyama S, Hoshiyama M, Watanabe S, Shimojo M, Kitamura Y (1995) Gating of somatosensory evoked responses during active finger movements: magnetoencephalographic studies. J Neurol Sci 128:195–204

    Article  PubMed  CAS  Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004a) Differential modulation of temporal and frontal components of the somatosensory N140 and the effect of interstimulus interval in a selective attention task. Brain Res Cogn Brain Res 19:33–39

    Article  Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004b) Passive enhancement of the somatosensory P100 and N140 in an active attention task using deviant alone condition. Clin Neurophysiol 115:871–879

    Article  Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Sakajiri Y, Tazoe T (2004c) Differential modulation of the short- and long-latency somatosensory evoked potentials in a forewarned reaction time task. Clin Neurophysiol 115:2223–2230

    Google Scholar 

  • Kida T, Nishihira Y, Hatta A, Wasaka T, Tazoe T, Sakajiri Y, Nakata H, Kaneda T, Kuroiwa K, Akiyama S, Sakamoto M, Kamijo K, Higashiura T (2004d) Resource allocation and somatosensory P300: effects of tracking speed and predictability of tracking direction. Clin Neurophysiol 115:2616–2628

    Article  Google Scholar 

  • Kida T, Wasaka T, Nakata H, Kakigi R (2006) Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement. Exp Brain Res 169:289–301

    Article  PubMed  Google Scholar 

  • Lee RG, White DG (1974) Modification of the human somatosensory evoked response during voluntary movement. Electroencephalogr Clin Neurophysiol 36:53–62

    Article  PubMed  CAS  Google Scholar 

  • Leocani L, Toro C, Zhuang P, Gerloff C, Hallett M (2001) Event-related desynchronization in reaction time paradigms: a comparison with event-related potentials and corticospinal excitability. Clin Neurophysiol 112:923–930

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-Y, Simöes C, Forss N, Hari R (2000) Differential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses. Neuroimage 11:334–340

    Article  PubMed  CAS  Google Scholar 

  • Michie PT, Bearpark HM, Crawford JM, Glue LCT (1987) The effects of spatial selective attention on the somatosensory event-related potential. Psychophysiology 24:449–463

    PubMed  CAS  Google Scholar 

  • Murase N, Kaji R, Shimazu H, Katayama-Hirota M, Ikeda A, Kohara N, Kimura J, Shibasaki H, Rothwell JC (2000) Abnormal premovement gating of somatosensory input in writer’s cramp. Brain 123:1813–1829

    Article  PubMed  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Nishihira Y, Kakigi R (2003) Mechanisms of differences in gating effects on short- and long-latency somatosensory evoked potentials relating to movement. Brain Topogr 15:211–222

    Article  PubMed  Google Scholar 

  • Nakata H, Inui K, Nishihira Y, Hatta A, Sakamoto N, Kida T, Wasaka T, Kakigi R (2004) Effects of a go/nogo task on the event-related potentials following somatosensory stimulation. Clin Neurophysiol 115:361–368

    Article  PubMed  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Tamura Y, Kida T, Kakigi R (2005a) Effects of ISI and stimulus probability on event-related go/nogo potentials after somatosensory stimulation. Exp Brain Res 162:193–199

    Article  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Akatsuka K, Kakigi R (2005b) Somato-motor inhibitory processing in humans: a study with MEG and ERP. Eur J Neurosci 22:1784–1792

    Article  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Tamura Y, Kida T, Kakigi R (2006) The characteristics of the nogo-N140 component in somatosensory go/nogo task. Neurosci Lett (in press)

  • Pfurtscheller G (1980) Central motor rhythm during sensory motor activities in man. Electroencephalogr Clin Neurophysiol 51:253–264

    Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  PubMed  CAS  Google Scholar 

  • Rahn E, Başar E (1993a) Enhancement of visual evoked potentials by stimulation during low prestimulus EEG stages. Int J Neurosci 72:123–136

    Article  CAS  Google Scholar 

  • Rahn E, Başar E (1993b) Prestimulus EEG-activity strongly influences the auditory evoke vertex response: a new method for selective averaging. Int J Neurosci 69:207–220

    CAS  Google Scholar 

  • Rodin EA, Grisell JL, Gudobba RD, Zachary G (1965) Relationships of EEG background rhythms to photic evoked responses. Electroencephalogr Clin Neurophysiol 19:301–304

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Babiloni C, Babiloni F, Ambrosini A, Onorati P, Carducci F, Urbano A (1999) “Gating” of human short-latency somatosensory evoked cortical responses during execution of movement. A high resolution electroencephalography study. Brain Res 843:161–170

    Article  PubMed  CAS  Google Scholar 

  • Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104:465–491

    PubMed  CAS  Google Scholar 

  • Salmelin R, Hari R (1994) Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60:537–550

    Article  PubMed  CAS  Google Scholar 

  • Seki K, Perlmutter SI, Fetz EE (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Seyal M, Ortstadt JL, Kraft LW, Gabor AJ (1987) Effect of movement on human spinal and subcortical somatosensory evoked potentials. Neurology 37:650–655

    PubMed  CAS  Google Scholar 

  • Shimazu H, Kaji R, Murase N, Kohara N, Ikeda A, Shibasaki H, Kimura J, Rothwell JC (1999) Premovement gating of short-latency somatosensory evoked potentials. Neuroreport 10:2457–2460

    PubMed  CAS  Google Scholar 

  • Starr A, Cohen LG (1985) ‘Gating’ of somatosensory evoked potentials begins before the onset of voluntary movement in man. Brain Res 348:183–186

    Article  PubMed  CAS  Google Scholar 

  • Starr A, Sandroni P, Michalewski HJ (1995) Readiness to respond in a target detection task: pre- and post-stimulus event-related potentials in normal subjects. Electroencephalogr Clin Neurophysiol 96:76–92

    Article  PubMed  CAS  Google Scholar 

  • Starr A, Aguinaldo T, Roe M, Michalewski HJ (1997) Sequential changes of auditory processing during target detection: motor responding versus mental counting. Electroencephalogr Clin Neurophysiol 105:201–212

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y, Hoshiyama M, Nakata H, Hiroe N, Inui K, Kaneoke Y, Inoue K, Kakigi R (2005) Functional relationship between human rolandic oscillations and motor cortical excitability: an MEG study. Eur J Neurosci 21:2555–2562

    Article  PubMed  Google Scholar 

  • Tapia MC, Cohen LG, Starr A (1987) Selectivity of attenuation (i.e., gating) of somatosensory potentials during voluntary movement in humans. Electroencephalogr Clin Neurophysiol 68:226–230

    Article  PubMed  CAS  Google Scholar 

  • Valeriani M, Restuccia D, Di Lazzaro V, Le Pera D, Tonari P (1999) Effect of movement on dipolar source activities of somatosensory evoked potentials. Muscle Nerve 22:1510–1519

    Article  PubMed  CAS  Google Scholar 

  • Waberski TD, Buchner H, Perkuhn M, Gobbele R, Wagner M, Kucker W, Silny J (1999) N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials. Clin Neurophysiol 110:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Wasaka T, Hoshiyama M, Nakata H, Nishihira Y, Kakigi R (2003) Gating of somatosensory evoked magnetic field during preparatory period of self-initiated finger movement. Neuroimage 20:1830–1838

    Article  PubMed  Google Scholar 

  • Wasaka T, Nakata H, Kida T, Kakigi R (2005a) Gating of SEPs by contraction of the contralateral homologous muscle during the preparatory period of self-initiated plantar flexion. Brain Res Cogn Brain Res 23:354–360

    Article  Google Scholar 

  • Wasaka T, Nakata H, Kida T, Kakigi R (2005b) Changes in the centrifugal gating effect on somatosensory evoked potentials depending on the level of contractile force. Exp Brain Res 166:118–125

    Article  CAS  Google Scholar 

  • Wasaka T, Nakata H, Akatsuka K, Kida T, Inui K, Kakigi R (2005c) Differential modulation of human primary and secondary somatosensory cortices during the preparatory period of self-initiated finger movement. Eur J Neurosci 22:1239–1247

    Article  Google Scholar 

  • Weerasinghe V, Sedgwick M (1994) Effect of manipulation and fractionated finger movements on subcortical sensory activity in man. Electroencephalogr Clin Neurophysiol 92:527–535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr O. Nagata and Mr Y. Takeshima for their technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Kida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kida, T., Wasaka, T., Nakata, H. et al. Centrifugal regulation of a task-relevant somatosensory signal triggering voluntary movement without a preceding warning signal. Exp Brain Res 173, 733–741 (2006). https://doi.org/10.1007/s00221-006-0448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0448-0

Keywords

Navigation