Skip to main content

Advertisement

Log in

A geometrical representation of entanglement

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We introduce a novel geometrical approach to characterize entanglement relations in large quantum systems. Our approach is inspired by Schumacher’s singlet state triangle inequality, which used an entropy-based distance to capture the strange properties of entanglement using geometry-based inequalities. Schumacher uses classical entropy and can only describe the geometry of bipartite states. We extend his approach by using von Neumann entropy to create an entanglement monotone that can be generalized for higher-dimensional systems. We achieve this by utilizing recent definitions for entropic areas, volumes, and higher-dimensional volumes for multipartite quantum systems. This enables us to differentiate systems with high quantum correlation from systems with low quantum correlation and differentiate between different types of multipartite entanglement. It also enable us to describe some of the strange properties of quantum entanglement using simple geometrical inequalities. Our geometrization of entanglement provides new insight into quantum entanglement. Perhaps by constructing well-motivated geometrical structures (e.g., relations among areas, volumes, etc.), a set of trivial geometrical inequalities can reveal some of the complex properties of higher-dimensional entanglement in multipartite systems. We provide numerous illustrative applications of this approach, and in particular to a random sample of a thousand density matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment:....].

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  2. P. Horodecki, R. Horodecki, Phys. Lett. A 194, 147 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. kurzynski and D. Kaszlikowski, Information-theoretic metric as a tool to investigate nonclassical correlations. Phys. Rev. A 89, 012103 (2014)

  4. A. Einstein, B. Podolsky, N. Rosen, Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  5. J.S. Bell, On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  6. A. Aspect, P. Grangier, G. Roger, Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

  7. B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature (London) 526, 682 (2015)

    Article  ADS  Google Scholar 

  8. M. Giustina et al., Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

  9. L.K. Shalm et al., Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  10. M.A. Nielsen, I, L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  11. M.M. Wilde, Quantum Information Theory, 2nd edn. (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  12. R. Cleve, H. Buhrman. arXiv:quant-ph/9704026 (1997)

  13. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. X. Wang, M.M. Wilde, Cost of quantum entanglement simplified. Phys. Rev. Lett. 125, 040502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  17. S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  18. M. Christandl, A. Winter, Squashed entanglement: an additive entanglement measure. J. Math. Phys. 45, 3, 829–840 (2004). https://doi.org/10.1063/1.1643788

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–4 (1969)

    Article  ADS  Google Scholar 

  20. R. Simon, Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84(12), 2726–2729 (2000)

    Article  ADS  Google Scholar 

  21. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Yang, K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, W. Song, Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof. IEEE Trans. Inf. Theory 55(7), 3375–3387 (2009)

    Article  MathSciNet  Google Scholar 

  23. F. Mintert, M. Kus, A. Buchleitner, Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. C.C. Rulli, M.S. Sarandy, Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  25. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Vidal, J. Mod. Opt. 47, 355 (2000)

    Article  ADS  Google Scholar 

  27. X.L. Qi, Does gravity come from quantum information? Nat. Phys. 14, 984–987 (2018)

    Article  Google Scholar 

  28. M. Van Raamsdonk, Building up space-time with quantum entanglement. Gen. Relativ. Gravit. 42, 2323–2329 (2010)

    Article  ADS  Google Scholar 

  29. P.M. Näger, The causal problem of entanglement. Synthese 193(4), 1127–1155 (2016)

    Article  MathSciNet  Google Scholar 

  30. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  31. W.A. Miller, S.M. Aslmarand, P.M. Alsing, V.S. Rana, Geometric measures of information for quantum state characterization. Ann. Math. Sci. Appl. 4(2), 395–409 (2019)

    Article  MathSciNet  Google Scholar 

  32. S.M. Aslmarand, W.A. Miller, V.S. Rana, P.M. Alsing, Quantum reactivity: an indicator of quantum correlation. Entropy 22(1), 6 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. B.W. Schumacher, Information and quantum nonseparability. Phys. Rev. A 44, 7047 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. V.A. Roklin, Lecture on the entropy theory of measure-preserving transformations. Russ. Math. Surv. 22, 152 (1967)

    Google Scholar 

  35. C. Rajski, A metric space of discrete probability distributions. Inf. Control 4, 373 (1961)

    Article  MathSciNet  Google Scholar 

  36. T. Rezaei et al., Experimental realization of Schumacher’s information geometric Bell inequality. Phys. Lett. A 405, 127444 (2021)

  37. J. Von Neumann, Mathematische grundlagen der quantenmechanik, vol. 38 (Springer, Berlin, 2013)

    MATH  Google Scholar 

  38. P.M. Hayden, M. Horodecki, B.M. Terhal, The asymptotic entanglement cost of preparing a quantum state. J. Phys. A: Math. Gen. 34(35), 6891 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  39. T. Ono, Problem 4417. Intermed. Math. 21, 14 (1914)

    Google Scholar 

  40. N. Johnston. QETLAB: A MATLAB toolbox for quantum entanglement, version 0.9. http://www.qetlab.com, January 12, 2016. https://doi.org/10.5281/zenodo.44637

  41. E.H. Lieb, M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

SMA would like to thank Ian George for his suggestions and helpful discussions. WAM would like thank support from the Air Force Office of Scientific Research, Air Force Research Laboratory’s Information Directorate as well as L3Harris. This research was supported in part by the Air Force Research Laboratory Information Directorate, through the Air Force Office of Scientific Research Summer Faculty Fellowship Program®, Contract Numbers \(\#FA8750-15-3-6003\), \(\#FA9550-15-0001\) and \(\#FA9550-20-F-0005\), AFOSR/AOARD Grant \(\#FA23861714070\), AFOSR/DURIP Grant \(\#FA95501910389\) and support from L3Harris. PMA for this work would like thank support from the Air Force Office of Scientific Research. DA is support by AFOSR Grant FA2386-21-1-0089, NRF-2020M3E4A1080031 and MSIT/IITP2021-0-01810. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of AFRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahabeddin M. Aslmarand.

Appendix

Appendix

In this section, we will present the proves for our proposed claims in the manuscript.

1.1 Appendix A

For any density matrix \(\rho _{ABC}\), the convoluted metric \(M_{AB}\) may be seen as a pseudo-metric. That is to say:

  1. 1.1

    \(M_{AB} = M_{BA} \)

  2. 1.2

    \(M_{AB} \ge 0\ \hbox {and is equal to}\ 0\ \)iff \( \rho _{ABC}=\rho _{AB} \otimes \rho _C \).

  3. 1.3

    \(M_{AB} + M_{BC} \ge M_{AC} \)

Proof

  1. 1.1

    In Eq.4, A and B are interchangeable.

  2. 1.2

    We know from strong subadditivity of quantum entropy (SSA) inequality [41] that for tripartite separable density matrix

    $$\begin{aligned} S(\rho _{ABC})\le S(\rho _{AC})+S(\rho _{BC})-S(\rho _{C}) \end{aligned}$$
    (28)

    One can write this inequality in two different ways

    $$\begin{aligned} S(\rho _{ABC})\le S(\rho _{AC})+S(\rho _{AB})-S(\rho _{A}) \end{aligned}$$
    (29)
    $$\begin{aligned} S(\rho _{ABC})\le S(\rho _{BC})+S(\rho _{AB})-S(\rho _{B}) \end{aligned}$$
    (30)

    Now by summing up these inequalities, one will reach to

    $$\begin{aligned} S(\rho _{ABC})+ S(\rho _{ABC})\le S(\rho _{BC})+S(\rho _{AB})-S(\rho _{B})+S(\rho _{AC})+S(\rho _{AB})-S(\rho _{A}) \end{aligned}$$
    (31)

    This will lead to

    $$\begin{aligned} \big [S(\rho _{ABC})-S(\rho _{BC})\big ]+ \big [S(\rho _{ABC})-S(\rho _{AC})\big ] \le S(\rho _{AB})-S(\rho _{B})+S(\rho _{AB})-S(\rho _{A}) \end{aligned}$$
    (32)

    which is equal to

    $$\begin{aligned} \widetilde{D}_{AB} \le D_{AB}; \end{aligned}$$
    (33)

    hence, \(M_{AB}\) is

    $$\begin{aligned} 0\le D_{AB}-\widetilde{D}_{AB}= M_{AB}. \end{aligned}$$
    (34)

    Furthermore, \(M_{AB}\) is zero if and only if \( \rho _{ABC}=\rho _{AB} \otimes \rho _C \). Since

    $$\begin{aligned} S(ABC)=&S(AB)+S(C) \nonumber \\ S(AC)=&S(A)+S(C) \nonumber \\ S(BC)=&S(B)+S(C) \end{aligned}$$
    (35)

    for \( \rho _{ABC}=\rho _{AB} \otimes \rho _C \) and plugging in 35 in Eq. 4 will make \(M_{AB}=0\).

  3. 1.3

    For triangle inequality, we start with definition of \( M_{AB}\)

    $$\begin{aligned}&M_{AB}= S(\rho _{A|B})+S(\rho _{B|A})-S(\rho _{A|BC})-S(\rho _{B|AC}) \end{aligned}$$
    (36)
    $$\begin{aligned}&M_{AB}=2S(\rho _{AB})-2S(\rho _{ABC})+S(\rho _{BC})+S(\rho _{AC})-S(\rho _A)-S(\rho _B) \end{aligned}$$
    (37)

    Now plugging in the definition into

    $$\begin{aligned} M_{AB}+M_{BC}\ge M_{AC} \end{aligned}$$
    (38)

    and after canceling the terms, we have

    $$\begin{aligned} 2S(\rho _{AB})-2S(\rho _{ABC})+2S(\rho _{BC})-2S(\rho _B) \ge 0 . \end{aligned}$$
    (39)

    This is strong subadditivity equation [41]

    $$\begin{aligned} S(\rho _{AB})+S(\rho _{BC}) \ge S(\rho _{ABC})+S(\rho _B) \end{aligned}$$
    (40)

    and is true for any arbitrary density matrix.\(\square \)

For n-partite systems to show \(M_{12}\) is a metric, one just needs to adjust \(\rho _{3}\) to \(\rho _{3...n}\).

1.2 Appendix B

Given \(\rho _{ABX}\), the convoluted metric \(M_{AB}\) is an entanglement monotone for detecting separability between the registers AB and X satisfies the following properties:

  1. 2.1

    \(M_{AB}\) is invariant under local and global isometries

  2. 2.2

    \(M_{AB}\) is non-increasing under LOCC

  3. 2.3

    \(M_{AB}\) is convex.

Proof

If we write the \(M_{AB}\) in terms of conditional mutual information

$$\begin{aligned} M_{AB} =&-2S(ABC) + 2S(AB) + S(AC) + S(BC) -S(A) - S(B) \nonumber \\ =&[S(AB) + S(AC) -S(ABC) - S(A)] + [S(AB) + S(BC) -S(ABC) - S(B)] \nonumber \\ =&I(B:C|A) + I(A:C|B) \end{aligned}$$
(41)
  1. 2.1

    von Neumann entropy is invariant under unitary operation; therefore, \(M_{AB}\) is invariant under unitary operation.

  2. 2.2

    Conditional mutual information is non-increasing under LOCC [22]; therefore, \(M_{AB}\) is non-increasing under LOCC.

  3. 2.3

    Conditional mutual information is convex [22]; therefore, \(M_{AB}\) is convex since the sum of two convex functions is also convex.

\(\square \)

1.3 Appendix C

Given \(\rho _{A_1...A_n}\), the \(^2M_{A_iA_jA_k}\) satisfies the following properties:

  1. 3.1

    is invariant under local and global isometries

  2. 3.2

    is convex.

  3. 3.3

    is non-increasing under LOCC.

Proof

  1. 3.1

    The von Neumann entropy is invariant under unitary operation; therefore, \(^2M_{A_i A-j A_k}\) is invariant under unitary operation.

  2. 3.2

    By adding and subtracting the terms

    $$\begin{aligned}&S(\rho _{A_1|A_2A_3})*S(\rho _{A_2|A_1A_3A_{4 ....n}}) \end{aligned}$$
    (42)
    $$\begin{aligned}&S(\rho _{A_2|A_1A_3})*S(\rho _{A_3|A_1A_2A_{4 ....n}}) \end{aligned}$$
    (43)
    $$\begin{aligned}&S(\rho _{A_3|A_1A_2})*S(\rho _{A_1|A_2A_3A_{4 ....n}}) \end{aligned}$$
    (44)

    To \(^2M_{A_1A_2A_3}\) make it equal to

    (45)

    Then we rewrite this as

    $$\begin{aligned} ^2M_{A_1A_2A_3}=&-\big [S(\rho _{A_1|A_2A_3})+S(\rho _{A_3|A_1A_2A_{4 ....n}})\big ]*\big [S(\rho _{A_2|A_1A_3})-S(\rho _{A_2|A_1A_3A_{4 ....n}})\big ]\nonumber \\&- \big [S(\rho _{A_3|A_1A_2})+S(\rho _{A_2|A_1A_3A_{4 ....n}})\big ]*\big [S(\rho _{A_1|A_2A_3})-S(\rho _{A_1|A_2A_3A_{4 ....n}})\big ] \nonumber \\&- \big [S(\rho _{A_2|A_1A_3})+S(\rho _{A_1|A_2A_3A_{4 ....n}})\big ]*\big [S(\rho _{A_3|A_1A_2})-S(\rho _{A_3|A_1A_2A_{4 ....n}})\big ] \end{aligned}$$
    (46)

    One can express this in terms of conditional mutual information as

    $$\begin{aligned} ^2M_{A_1A_2A_3}=&\big [I(A_1;A_2A_3)+I(A_3;A_1A_2A_{4 ....n})-S(A_1)-S(A_3)\big ]*\big [I(A_2;A_{4 ....n}|A_1A_3)\big ]\nonumber \\&+ \big [I(A_3;A_1A_2)+I(A_2;A_1A_3A_{4 ....n})-S(A_3)-S(A_2)\big ]*\big [I(A_1;A_{4 ....n}|A_2A_3)\big ] \nonumber \\&+ \big [I(A_2;A_1A_3)+I(A_1;A_2A_3A_{4 ....n})-S(A_1)-S(A_2)\big ]*\big [I(A_3;A_{4 ....n}|A_1A_3)\big ] \end{aligned}$$
    (47)

    Now since we know subsystems \(A_iA_jA_k \) is separable from the rest of the system \(^2M_{A_iA_jA_k}\) will equal to zero due to \(I(A_i;A_{4 ....n}|A_jA_k)=0\).

  3. 3.3

    To prove that \(^2M_{A_1A_2A_3}\) is non-increasing under LOCC, we have to use the proposition by [22]

Proposition 1

A convex function f does not increase under LOCC if and only if

  1. a)

    f is invariant under local unitary operators

  2. b)

    if f satisfies

    $$\begin{aligned} f\left( \sum _i p_i \rho _{AB}^i\otimes |i\rangle x \langle i| \right) =\sum _i p_if(\rho _{AB}^i). \end{aligned}$$
    (48)

Since \(^2M_{A_1A_2A_3}\) satisfies both of these, then it is non-increasing under LOCC.

1.4 Appendix D

Given \(\rho _{A_1...A_n}\), the \(E(\rho )\) satisfies the following properties:

  1. 6.1

    \(E(\rho )\) is invariant under local and global isometries;

  2. 6.2

    \(E(\rho )\) is non-increasing under LOCC; and

  3. 6.3

    \(E(\rho )\) is convex.

Proof

  1. 1.

    \(E(\rho )\) is invariant under local unitary operators due to \(^mM_{A_i...A_m}\) being invariant under local unitary operators.

  2. 2.

    From our previous discussions, we know that \(^mM_{A_i...A_m}\) are non-increasing under LOCC, and we know that sum of non-increasing terms will also be non-increasing under LOCC. Then \(E(\rho )\) is non-increasing under LOCC.

1.5 Appendix E

For a given state \(\rho _{AB}\), squashed entanglement is given by

$$\begin{aligned} E_{sq}(\rho _{AB}) = \frac{1}{2} inf I(A : B|E), \end{aligned}$$
(49)

with

$$\begin{aligned} I(A:B|E)=S(AE)+S(BE)-S(ABE)-S(E). \end{aligned}$$
(50)

It is obvious from the equation above that \( I(A:B|E)= I(B:A|E)\). We have stated that if C is separable from AB our method will give answer similar to squashed entanglement, this is because the degree of entanglement of A and B in this case will equal to entanglement of the \(\rho _{AC}\) part with \(\rho _{B}\), or the \(\rho _{BC}\) part with\(\rho _{C}\). In appendix B, we have shown that

$$\begin{aligned} M_{AB}&= -2S(ABC) + 2S(AB) + S(AC) + S(BC) -S(A) - S(B) \\&= [S(AB) + S(AC) -S(ABC) - S(A)] + [S(AB) + S(BC) -S(ABC) - S(B)] \\&= I(B:C|A) + I(A:C|B). \end{aligned}$$

If we write this for either \(M_{AC}\) or \(M_{BC}\) after applying our convex roof method, we will simply get a constant number multiplied by Eq. 49, which means \(M_{AC}\) multiplied by value of squashed entanglement. The motivation we choose to mention getting result similar to squashed entanglement is the reason we compare it to squashed entanglement is simply because, similar to squashed entanglement our function look at entanglement of A and B from point of view of register C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslmarand, S.M., Miller, W.A., Ahn, D. et al. A geometrical representation of entanglement. Eur. Phys. J. Plus 137, 296 (2022). https://doi.org/10.1140/epjp/s13360-022-02493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02493-1

Navigation