Skip to main content
Log in

Boundary Chiral Algebras and Holomorphic Twists

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the holomorphic twist of 3d \(\mathcal{N}=2\) gauge theories in the presence of boundaries, and the algebraic structure of bulk and boundary local operators. In the holomorphic twist, both bulk and boundary local operators form chiral algebras (a.k.a. vertex algebras). The bulk algebra is commutative, endowed with a shifted Poisson bracket and a “higher” stress tensor; while the boundary algebra is a module for the bulk, may not be commutative, and may or may not have a stress tensor. We explicitly construct bulk and boundary algebras for free theories and Landau–Ginzburg models. We construct boundary algebras for gauge theories with matter and/or Chern–Simons couplings, leaving a full description of bulk algebras to future work. We briefly discuss the presence of higher A-infinity like structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We use the terms “chiral algebra” and “vertex algebra” interchangeably. A priori neither term implies the existence of a stress tensor or other additional structures. In much of the literature, the term “vertex operator algebra” is used to refer to a chiral/vertex algebra with a stress tensor; we will avoid the term “vertex operator algebra” entirely to try to alleviate confusion. We will explain precisely which additional structures are present in the twist of 3d \(\mathcal{N}=2\) theories below.

  2. See Sect. 2.1 for the precise definition of spin J. Also, throughout this paper, we use R-charge rather than the more traditional fermion number as a cohomological grading—whence the appearance of \(e^{i\pi R}\) rather than \(e^{i\pi F}\) in (1.2). In the index, this is just a matter of convention; but at the level of the algebra \(\mathcal{V}\), it is convenient to use R-charge (when unbroken) as a cohomological grading because it gives a natural \({\mathbb {Z}}\) or \({\mathbb {Q}}\) refinement of fermion number.

  3. We expect that bulk chiral algebras in gauge theories could be constructed via a state-operator correspondence, analogous (on one hand) to the Braverman-Finkelberg-Nakajima construction [45, 46] in 3d \(\mathcal{N}=4\) theories, and (on the other hand) to the state-operator correspondence we eventually use to capture monopole operators on Dirichlet boundary conditions. However, we do not pursue bulk algebras further here.

  4. With some important caveats concerning the boundary degrees of freedom.

  5. We do not restrict to ghost-number zero, as is done in traditional BRST quantization of gauge theories. Restricting to ghost-number zero would amount to taking strict, rather than derived, invariants.

  6. A more precise statement is made in Sect. 3.7.

  7. Here the correct \(L_\infty \) structure on bulk operators is the natural one on the Hochschild cochains of the algebra of functions on the target, or equivalently the transferred \(L_\infty \) structure on the Hochschild cohomology.

  8. In the case of 2d topologically twisted theories, a sufficient condition for \(\beta _{\textrm{der}}\) to be an isomorphism is that \(\mathcal{B}\) generates the category of boundary conditions. Analogous conditions for the 3d holomorphic twist are not yet well understood.

  9. More precisely: on a 3-manifold with a transverse holomorphic foliation structure, the line operators should be supported on integral flows of the transverse vector field \(\partial /\partial t\).

  10. Such half-BPS boundary conditions defined by vacua appeared in classic work of Hori-Iqbal-Vafa on the 2d A-model [88]. They are sometimes called “thimble branes.” They were described in the general setting of massive 2d theories by [89, 90]. In 3d \(\mathcal{N}=4\) theories, boundary conditions defined by vacua were discussed in detail in [91, Sec 4] and [92, 93]. In 3d \(\mathcal{N}=2\) theories, many examples of \(\mathcal{N}=(0,2)\) boundary conditions defined by vacua have appeared in e.g. [27, 28, 31, 85].

  11. One may also consider manifolds with corners, as in [27, 100, 106,107,108].

  12. In the BV-BRST formalism, one would further add the untwisted BRST operator \(Q_{\textrm{BRST}}\) to the SUSY supercharge \(\overline{Q}_+\) to construct \(Q=Q_{\textrm{BRST}}+\overline{Q}_+\). We introduce the BV-BRST formalism later in Sect. 3.2.

  13. When \(U(1)_J\) charges are non-integral, extra topological conditions are required in order to define the holomorphic twist globally, on 3-manifolds with THF structure. Any 3-manifold with a THF structure has a canonical SO(2) principal bundle, defined as the orthogonal complement of the real codimension 2 foliation. This SO(2) gets identified with \(U(1)_J\). If the \(U(1)_J\) charges of fields/operators can all be chosen to be rational, belonging to \(\frac{1}{d}{\mathbb {Z}}\) for some d, then we must require the structure group of the canonical bundle to be equipped with a reduction to its d-fold cover. That is, we need a transverse d-spin structure. This will not be important in the current paper, since we are working in flat space. (In fact, even irrational charges are acceptable for us.)

  14. The definition (2.12) differs from that in [33] by a sign: \(\{\mathcal{O}_1{}_\lambda \mathcal{O}_2\}_{\text {Yagi-Oh}}\big |_{\lambda =0} = (-1)^{|\mathcal{O}_1|}\{\!\{ \mathcal{O}_1,\mathcal{O}_2\}\!\}\).

  15. There is one (somewhat trivial) exception to this argument. It may be that all holomorphic derivatives \(\partial \mathcal{O}\) are zero in cohomology. In this case the bulk chiral algebra \(\mathcal{V}\) is fully topological, and reduces to an ordinary graded-commutative algebra. Then one can just define the stress tensor in \(\mathcal{V}\) to be zero. In the full physical theory, one would expect \(T_{zz}\) to be Q-exact, though this is not strictly necessary.

  16. Technically, we are assuming that the identity on the boundary is not Q-exact. Otherwise, the entire chiral algebra \(\mathcal{V}_\partial \) would be zero—indicating a spontaneous breaking of (0,2) SUSY.

  17. In this table, we are actually giving the charges of the local operators called \(\phi \), \(\psi _+\), etc. This is standard and unspoken physics convention. Since the local operators are functionals on the space of fields, the fields technically have opposite charges.

  18. Explicitly, given any element \(\tau \in {\mathfrak {g}}\), we have \(\langle \mu (\phi ,\psi ),\tau \rangle = \psi \tau \phi \), where the RHS involves the action of \(\tau \) on \(\phi \in V\), and a contraction with \(\psi \in V^\vee \). More schematically, we have \(\mu (\phi ,\psi ) = \frac{\partial }{\partial \tau } (\psi \tau \phi ) \sim \phi \psi \).

  19. It is useful to think of the Chern–Simons level ‘k’ as a normalization of the Cartan-Killing form. For classical groups, the Cartan-Killing form at \(k=1\) correspond to the trace in the fundamental representation.

  20. We use the slash notation “\(\big |\)” as shorthand for evaluation at \(t=0\).

  21. These sorts of complex-codimension jumping loci are distinct from wall crossing, and featured in recent generalizations of the elliptic genus [132, 133].

  22. Here we mean “fields” in the standard sense of chiral algebras as well. Physically, they are really operators.

  23. See Footnote 14 (page 16) for a note on sign conventions. In the conventions of [33], which agree with more standard mathematical conventions for a -1 shifted Poisson algebra, one would have \(\{\!\{\phi ,\psi \}\!\} = 1\) and \(\{\!\{\psi ,\phi \}\!\} = -1\).

  24. We should stress that even the free chiral theory may admit higher operations. For example, our calculations in Sect. 5 may be seen as evidence for a non-trivial higher operation involving three operators colliding along the topological direction: two fermions and a polynomial in the bosons of at least cubic degree.

  25. Being more careful: the standard supersymmetric index is usually defined following the original [136] as \(\text {Tr}(-1)^Fq^J...\) rather than \(\text {Tr}e^{i\pi R}q^J...\). The two expressions are equivalent, up to a redefinition of q. Namely, physical fermion number is related to untwisted spin as \(F=2J_0\) (mod 2); thus, keeping in mind that \(J=R/2-J_0\), we see that shifting \(q\rightarrow e^{-2\pi i}q\) relates the character (4.11) to the standard index.

  26. We thank N. Paquette for discussions related to this idea [137].

  27. The term “flip” originates in [72], where a similar mechanism was used to relate half-BPS boundary conditions for 4d hypermultiplet.

  28. A constant is allowed because the integral of a constant superfield vanishes. This is equally true in the original physical 2d \(\mathcal{N}=(0,2)\) theory. However, preserving \(U(1)_R\) symmetry forces \(\sum _\alpha J_\alpha E^\alpha =0\).

  29. In principle, the the bulk algebra of a gauge theory could be obtained by taking the derived center of the boundary algebra on a Neumann boundary condition; or by generalizing some of the computations involving cohomology of moduli spaces of G-bundles from Sect. 7. It would be interesting to develop this in future work.

  30. It is conceivable, though, that the derived, algebraic geometric formulation of our final answer will apply to more general auxiliary chiral algebras.

  31. Physically, the derivatives in (6.6) should actually be covariant \(D_z\) derivatives. However, in the twisted formalism, there is no distinction between covariant and non-covariant derivatives. (The connection in the twisted formalism only has \(A_{{\bar{z}}}\) and \(A_t\) components.) A practical way to understand this is that, when describing the abstract structure of the algebra, it does not matter whether covariant or non-covariant derivatives are used. The connection never appears; nor does the \(F_{zz}\) curvature component, since it automatically vanishes.

  32. Quick comment on \({\mathfrak {g}}\) vs. \({\mathfrak {g}}^*\): In physics, the \({\textsf {c}}\) ghost is a \({\mathfrak {g}}\)-valued field. The operators formed from the \({\textsf {c}}\) ghost are functionals of this field, and are therefore elements of \({\mathfrak {g}}^*\). We can see this explicitly when “expanding \({\textsf {c}}\) into components”: in a formula \({\textsf {c}}= {\textsf {c}}^aT_a\), the generators \(T_a\) are elements of \({\mathfrak {g}}\) and the coefficients \({\textsf {c}}^a\), which are the actual local operators, are elements of \({\mathfrak {g}}^*\). This agrees with the standard mathematical formulation of the Chevalley–Eilenberg cochain complex, in terms of \({\mathfrak {g}}^*\).

  33. Closely related computations of the Q-cohomology of the Hilbert space of 3d \(\mathcal{N}=2\) gauge theories on Riemann surfaces were performed in [105]. It explained carefully therein that the Hilbert space is Dolbeault cohomology valued in a particular sheaf, depending on the fermionic matter of the theory, and twisted by a power of the canonical bundle due to Chern–Simons terms. In pure gauge theory on a disc with Neumann b.c. and a Chern–Simons level \(-{\textsf {h}}\), the overall twist cancels out, so we are left with the cohomology of the structure sheaf as in (6.17).

  34. A possible concern, which we will not explore further here, is that the presence of gauge fields weakens the argument we gave to exclude instanton corrections involving configurations of bulk fields which are constant in the direction normal to the boundary. In the presence of gauge fields, the bulk fields would only be covariantly constant, and the divergence of the instanton action should be revisited.

  35. Corresponding to these charge assignments, the bulk bosonic chirals (XYZ) have R-charges (0, 1, 1). This ensures that the superpotential \(W=XYZ\) has R-charge 2, as required.

  36. We are using algebraic/sheaf notation for cohomology on the RHS. Analytically, the RHS would be written as \(H^{(0,\bullet )}_{{\bar{\partial }}}(\text {Bun}_G(\Sigma ), K^{\frac{1}{2}})\), i.e. it is the cohomology of the \({\bar{\partial }}\) operator acting on (0, p) forms valued in \(K^{\frac{1}{2}}\).

  37. If G has trivial center, then \(\text {Bun}_G\) is connected and \(H^2(\text {Bun}_G(\Sigma ),{\mathbb {Z}})={\mathbb {Z}}\), so one can simply say that \(c_1(\mathcal{L})\) generates. In general, \(c_1(\mathcal{L})\) is a multiple of the Kähler form, normalized to restrict to a generator of \(H^2\) on each connected component.

  38. The double quotient \(G(\mathcal{O})\backslash G(\mathcal{K})/G(\mathcal{O}) = G(\mathcal{O})\backslash \text {Gr}_G\), also known as the space of Hecke modifications, has appeared in the physics of bulk ’t Hooft lines in 4d Yang–Mills [4, 18], and in the BFN construction of 3d \(\mathcal{N}=4\) Coulomb branches [45, 46]. The one-sided quotient is appearing in the construction of boundary monopole operators here for a similar reason.

References

  1. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988). https://doi.org/10.1007/BF01223371

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988). https://doi.org/10.1007/BF01466725

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Vafa, C., Witten, E.: A strong coupling test of S duality. Nucl. Phys. B 431, 3–77 (1994). https://doi.org/10.1016/0550-3213(94)90097-3. arXiv:hep-th/9408074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Numer. Theor. Phys. 1, 1–236 (2007). https://doi.org/10.4310/CNTP.2007.v1.n1.a1. arXiv:hep-th/0604151

    Article  MathSciNet  MATH  Google Scholar 

  5. Rozansky, L., Witten, E.: Hyper-Kahler geometry and invariants of three manifolds. Sel. Math. 3, 401–458 (1997). https://doi.org/10.1007/s000290050016. arXiv:hep-th/9612216

    Article  MATH  Google Scholar 

  6. Blau, M., Thompson, G.: Aspects of \(N(T)\ge 2\) topological gauge theories and D-branes. Nucl. Phys. B 492, 545–590 (1997). https://doi.org/10.1016/S0550-3213(97)00161-2. arXiv:hep-th/9612143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Costello, K.J.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. arXiv preprint arXiv:1111.4234 (2011)

  8. Elliott, C., Safronov, P.: Topological twists of supersymmetric algebras of observables. Commun. Math. Phys. 371, 727–786 (2019). https://doi.org/10.1007/s00220-019-03393-9. arXiv:1805.10806

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Eager, R., Saberi, I., Walcher, J.: Nilpotence varieties. arXiv:1807.03766

  10. Witten, E.: Mirror manifolds and topological field theory. arXiv:hep-th/9112056

  11. Kapustin, A.: Chiral de Rham complex and the half-twisted sigma-model. arXiv:hep-th/0504074

  12. Witten, E.: Two-dimensional models with (0,2) supersymmetry: perturbative aspects. Adv. Theor. Math. Phys. 11, 1–63 (2007). https://doi.org/10.4310/ATMP.2007.v11.n1.a1. arXiv:hep-th/0504078

    Article  MathSciNet  MATH  Google Scholar 

  13. Nekrasov, N.A.: Lectures on curved beta-gamma systems, pure spinors, and anomalies. arXiv:hep-th/0511008

  14. Gorbounov, V., Gwilliam, O., Williams, B.: Chiral differential operators via Batalin–Vilkovisky quantization. arXiv:1610.09657

  15. Tan, M.-C.: Two-dimensional twisted sigma models and the theory of chiral differential operators. Adv. Theor. Math. Phys. 10, 759–851 (2006). https://doi.org/10.4310/ATMP.2006.v10.n6.a1. arXiv:hep-th/0604179

    Article  MathSciNet  MATH  Google Scholar 

  16. Malikov, F., Schechtman, V., Vaintrob, A.: Chiral de Rham complex. Commun. Math. Phys. 204, 439–473 (1999). https://doi.org/10.1007/s002200050653. arXiv:math/9803041

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gorbounov, V., Malikov, F., Schechtman, V.: Gerbes of chiral differential operators. Math. Res. Lett. 7, 55–66 (2000). arXiv:math/9906117

    Article  MathSciNet  MATH  Google Scholar 

  18. Kapustin, A.: Holomorphic reduction of N=2 gauge theories, Wilson–’t Hooft operators, and S-duality. arXiv:hep-th/0612119

  19. Costello, K.: Supersymmetric gauge theory and the Yangian. arXiv:1303.2632

  20. Elliott, C., Yoo, P.: Geometric Langlands twists of \(N=4\) gauge theory from derived algebraic geometry. Adv. Theor. Math. Phys. 22, 615–708 (2018). https://doi.org/10.4310/ATMP.2018.v22.n3.a3. arXiv:1507.03048

    Article  MathSciNet  MATH  Google Scholar 

  21. Aganagic, M., Costello, K., McNamara, J., Vafa, C.: Topological Chern–Simons/matter theories. arXiv:1706.09977

  22. Closset, C., Dumitrescu, T.T., Festuccia, G., Komargodski, Z.: Supersymmetric field theories on three-manifolds. JHEP 05, 017 (2013). https://doi.org/10.1007/JHEP05(2013)017. arXiv:1212.3388

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Closset, C., Dumitrescu, T.T., Festuccia, G., Komargodski, Z.: The geometry of supersymmetric partition functions. JHEP 01, 124 (2014). https://doi.org/10.1007/JHEP01(2014)124. arXiv:1309.5876

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Benini, F., Zaffaroni, A.: A topologically twisted index for three-dimensional supersymmetric theories. JHEP 07, 127 (2015). https://doi.org/10.1007/JHEP07(2015)127. arXiv:1504.03698

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Benini, F., Zaffaroni, A.: Supersymmetric partition functions on Riemann surfaces. Proc. Symp. Pure Math. 96, 13–46 (2017). arXiv:1605.06120

    MathSciNet  MATH  Google Scholar 

  26. Closset, C., Kim, H.: Comments on twisted indices in 3D supersymmetric gauge theories. JHEP 08, 059 (2016). https://doi.org/10.1007/JHEP08(2016)059. arXiv:1605.06531

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gadde, A., Gukov, S., Putrov, P.: Walls, lines, and spectral dualities in 3D gauge theories. JHEP 05, 047 (2014). https://doi.org/10.1007/JHEP05(2014)047. arXiv:1302.0015

    Article  ADS  Google Scholar 

  28. Okazaki, T., Yamaguchi, S.: Supersymmetric boundary conditions in \(3D\)\({\cal{N} }=2\) theories. Proc. Symp. Pure Math. 88, 343–350 (2014). https://doi.org/10.1090/pspum/088/01459

    Article  MathSciNet  MATH  Google Scholar 

  29. Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds. arXiv:1306.4320

  30. Yoshida, Y., Sugiyama, K.: Localization of 3d \({\cal{N}}=2\) supersymmetric theories on \(S^1 \times D^2\). arXiv:1409.6713

  31. Dimofte, T., Gaiotto, D., Paquette, N.M.: Dual boundary conditions in 3d SCFT’s. JHEP 05, 060 (2018). https://doi.org/10.1007/JHEP05(2018)060. arXiv:1712.07654

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Brunner, I., Schulz, J., Tabler, A.: Boundaries and supercurrent multiplets in 3d Landau-Ginzburg models. JHEP 06, 046 (2019). https://doi.org/10.1007/JHEP06(2019)046. arXiv:1904.07258

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Oh, J., Yagi, J.: Poisson vertex algebras in supersymmetric field theories. arXiv:1908.05791

  34. Lurie, J.: Higher algebra

  35. Getzler, E.: Batalin–Vilkovisky algebras and two-dimensional topological field theories. Commun. Math. Phys. 159, 265–285 (1994). https://doi.org/10.1007/BF02102639. arXiv:hep-th/9212043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Costello, K., Scheimbauer, C.: Lectures on mathematical aspects of (twisted) supersymmetric gauge theories. In: Mathematical Aspects of Quantum Field Theories, Math. Phys. Stud., pp. 57–87. Springer, Cham (2015)

  37. Beem, C., Ben-Zvi, D., Bullimore, M., Dimofte, T., Neitzke, A.: Secondary products in supersymmetric field theory. arXiv:1809.00009

  38. Kac, V.: Vertex Algebras for Beginners. University Lecture Series, vol. 10. American Mathematical Society, Providence (1997)

    Google Scholar 

  39. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Vol. 88 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001). https://doi.org/10.1090/surv/088

    Book  Google Scholar 

  40. Kim, S.: The complete superconformal index for N=6 Chern–Simons theory. Nucl. Phys. B 821, 241–284 (2009). https://doi.org/10.1016/j.nuclphysb.2009.06.025. arXiv:0903.4172

  41. Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general R-charge assignments. JHEP 04, 007 (2011). https://doi.org/10.1007/JHEP04(2011)007. arXiv:1101.0557

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Kapustin, A., Willett, B.: Generalized Superconformal Index for Three Dimensional Field Theories. arXiv:1106.2484

  43. Beem, C., Dimofte, T., Pasquetti, S.: Holomorphic blocks in three dimensions. JHEP 12, 177 (2014). https://doi.org/10.1007/JHEP12(2014)177. arXiv:1211.1986

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Kapustin, A., Li, Y.: D branes in Landau–Ginzburg models and algebraic geometry. JHEP 12, 005 (2003). https://doi.org/10.1088/1126-6708/2003/12/005. arXiv:hep-th/0210296

    Article  ADS  MathSciNet  Google Scholar 

  45. Nakajima, H.: Towards a mathematical definition of Coulomb branches of \(3\)-dimensional \({\cal{N} }=4\) gauge theories, I. Adv. Theor. Math. Phys. 20, 595–669 (2016). https://doi.org/10.4310/ATMP.2016.v20.n3.a4. arXiv:1503.03676

    Article  MathSciNet  MATH  Google Scholar 

  46. Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of \(3\)-dimensional \({\cal{N}}=4\) gauge theories, II. arXiv:1601.03586

  47. Witten, E.: Supersymmetric index of three-dimensional gauge theory. arXiv:hep-th/9903005

  48. Bergman, O., Hanany, A., Karch, A., Kol, B.: Branes and supersymmetry breaking in three-dimensional gauge theories. JHEP 10, 036 (1999). https://doi.org/10.1088/1126-6708/1999/10/036. arXiv:hep-th/9908075

    Article  ADS  MATH  Google Scholar 

  49. Ohta, K.: Supersymmetric index and s rule for type IIB branes. JHEP 10, 006 (1999). https://doi.org/10.1088/1126-6708/1999/10/006. arXiv:hep-th/9908120

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Dijkgraaf, R., Hollands, L., Sulkowski, P., Vafa, C.: Supersymmetric gauge theories, intersecting branes and free fermions. JHEP 02, 106 (2008). https://doi.org/10.1088/1126-6708/2008/02/106. arXiv:0709.4446

    Article  ADS  MathSciNet  Google Scholar 

  51. Armoni, A., Niarchos, V.: Defects in Chern–Simons theory, gauged WZW models on the brane, and level-rank duality. JHEP 07, 062 (2015). https://doi.org/10.1007/JHEP07(2015)062. arXiv:1505.02916

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Aharony, O., Hanany, A., Intriligator, K.A., Seiberg, N., Strassler, M.J.: Aspects of N=2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B 499, 67–99 (1997). https://doi.org/10.1016/S0550-3213(97)00323-4. arXiv:hep-th/9703110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Intriligator, K.A., Seiberg, N.: Mirror symmetry in three-dimensional gauge theories. Phys. Lett. B 387, 513–519 (1996). https://doi.org/10.1016/0370-2693(96)01088-X. arXiv:hep-th/9607207

    Article  ADS  MathSciNet  Google Scholar 

  54. de Boer, J., Hori, K., Ooguri, H., Oz, Y.: Mirror symmetry in three-dimensional gauge theories, quivers and D-branes. Nucl. Phys. B 493, 101–147 (1997). https://doi.org/10.1016/S0550-3213(97)00125-9. arXiv:hep-th/9611063

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. de Boer, J., Hori, K., Oz, Y.: Dynamics of N=2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B 500, 163–191 (1997). https://doi.org/10.1016/S0550-3213(97)00328-3. arXiv:hep-th/9703100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. de Boer, J., Hori, K., Oz, Y., Yin, Z.: Branes and mirror symmetry in N=2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B 502, 107–124 (1997). https://doi.org/10.1016/S0550-3213(97)00444-6. arXiv:hep-th/9702154

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Aharony, O.: IR duality in d = 3 N=2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories. Phys. Lett. B 404, 71–76 (1997). https://doi.org/10.1016/S0370-2693(97)00530-3. arXiv:hep-th/9703215

    Article  ADS  MathSciNet  Google Scholar 

  58. Okazaki, T.: Abelian dualities of \({\cal{N} }=(0,4)\) boundary conditions. JHEP 08, 170 (2019). https://doi.org/10.1007/JHEP08(2019)170. arXiv:1905.07425

    Article  ADS  MathSciNet  Google Scholar 

  59. Vafa, C.: Topological Landau–Ginzburg models. Mod. Phys. Lett. A 6, 337–346 (1991). https://doi.org/10.1142/S0217732391000324

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Dyckerhoff, T., et al.: Compact generators in categories of matrix factorizations. Duke Math. J. 159, 223–274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003). arXiv:q-alg/0709040

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), pp. 120–139. Birkhäuser, Basel (1995)

  63. Kontsevich, M., Soibelman, Y.: Notes on a-infinity algebras, a-infinity categories and non-commutative geometry, I

  64. Costello, K.: Topological conformal field theories and Calabi–Yau categories. Adv. Math. 210, 165–214 (2007). https://doi.org/10.1016/j.aim.2006.06.004. arXiv:math/0412149

    Article  MathSciNet  MATH  Google Scholar 

  65. Kapustin, A., Rozansky, L.: On the relation between open and closed topological strings. Commun. Math. Phys. 252, 393–414 (2004). https://doi.org/10.1007/s00220-004-1227-z. arXiv:hep-th/0405232

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Zeng, K.: Study of holomorphic-topological twist of 3d N=2 theories. Master’s thesis, Perimeter Institute (2019)

  67. Zeng, K.: Monopole Operators and Bulk-Boundary Relation in Holomorphic Topological Theories. arXiv:2111.00955

  68. Tan, M.-C.: Equivariant cohomology of the chiral de Rham complex and the half-twisted gauged sigma model. Adv. Theor. Math. Phys. 13, 897–946 (2009). https://doi.org/10.4310/ATMP.2009.v13.n4.a1. arXiv:hep-th/0612164

    Article  MathSciNet  MATH  Google Scholar 

  69. Frenkel, E., Losev, A.: Mirror symmetry in two steps: A-I-B. Commun. Math. Phys. 269, 39–86 (2006). https://doi.org/10.1007/s00220-006-0114-1. arXiv:hep-th/0505131

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Costello, K., Gaiotto, D.: Vertex operator algebras and 3D \( {\cal{N} } = 4\) gauge theories. JHEP 05, 018 (2019). https://doi.org/10.1007/JHEP05(2019)018. arXiv:1804.06460

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Costello, K., Creutzig, T., Gaiotto, D.: Higgs and Coulomb branches from vertex operator algebras. JHEP 03, 066 (2019). https://doi.org/10.1007/JHEP03(2019)066. arXiv:1811.03958

    Article  MathSciNet  MATH  Google Scholar 

  72. Dimofte, T., Gaiotto, D., Gukov, S.: Gauge theories labelled by three-manifolds. Commun. Math. Phys. 325, 367–419 (2014). https://doi.org/10.1007/s00220-013-1863-2. arXiv:1108.4389

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern–Simons theories with matter. JHEP 03, 089 (2010). https://doi.org/10.1007/JHEP03(2010)089. arXiv:0909.4559

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Kapustin, A., Willett, B., Yaakov, I.: Exact results for supersymmetric abelian vortex loops in 2+1 dimensions. JHEP 06, 099 (2013). https://doi.org/10.1007/JHEP06(2013)099. arXiv:1211.2861

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Drukker, N., Okuda, T., Passerini, F.: Exact results for vortex loop operators in 3d supersymmetric theories. JHEP 07, 137 (2014). https://doi.org/10.1007/JHEP07(2014)137. arXiv:1211.3409

    Article  ADS  Google Scholar 

  76. Gaitsgory, D.: Notes on Geometric Langlands: Categories over the Ran space (2010)

  77. Raskin, S.: Chiral categories (2015)

  78. Dimofte, T., Garner, N., Geracie, M., Hilburn, J.: Mirror symmetry and line operators. arXiv:1908.00013

  79. Hilburn, J., Yoo, P.: Work in progress (2020)

  80. Aganagic, M., Okounkov, A.: Duality interfaces in 3-dimensional theories

  81. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2003). https://doi.org/10.4310/ATMP.2003.v7.n5.a4. arXiv:hep-th/0206161

    Article  MathSciNet  MATH  Google Scholar 

  82. Shadchin, S.: On F-term contribution to effective action. JHEP 08, 052 (2007). https://doi.org/10.1088/1126-6708/2007/08/052. arXiv:hep-th/0611278

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225–287 (2011). https://doi.org/10.1007/s11005-011-0531-8. arXiv:1006.0977

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Givental, A., Lee, Y.-P.: Quantum \(K\)-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Invent. Math. 151, 193–219 (2003). https://doi.org/10.1007/s00222-002-0250-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Jockers, H., Mayr, P.: A 3d Gauge Theory/Quantum K-Theory Correspondence. arXiv:1808.02040

  86. Aganagic, M., Okounkov, A.: Elliptic stable envelopes. arXiv:1604.00423

  87. Aganagic, M., Okounkov, A.: Quasimap counts and Bethe eigenfunctions. Mosc. Math. J. 17, 565–600 (2017). arXiv:1704.08746

    Article  MathSciNet  MATH  Google Scholar 

  88. Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. arXiv:hep-th/0005247

  89. Gaiotto, D., Moore, G.W., Witten, E.: An Introduction to the Web-Based Formalism. arXiv:1506.04086

  90. Gaiotto, D., Moore, G.W., Witten, E.: Algebra of the Infrared: String Field Theoretic Structures in Massive \({\cal{N}}=(2,2)\) Field Theory in Two Dimensions. arXiv:1506.04087

  91. Bullimore, M., Dimofte, T., Gaiotto, D., Hilburn, J.: Boundaries, mirror symmetry, and symplectic duality in 3D \({\cal{N} }=4\) gauge theory. JHEP 10, 108 (2016). https://doi.org/10.1007/JHEP10(2016)108. arXiv:1603.08382

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Dedushenko, M.: Gluing I: Integrals and Symmetries. arXiv:1807.04274

  93. Dedushenko, M.: Gluing II: Boundary Localization and Gluing Formulas. arXiv:1807.04278

  94. Dine, M., Seiberg, N., Wen, X.G., Witten, E.: Nonperturbative effects on the string world sheet. Nucl. Phys. B 278, 769–789 (1986). https://doi.org/10.1016/0550-3213(86)90418-9

    Article  ADS  MathSciNet  Google Scholar 

  95. Silverstein, E., Witten, E.: Criteria for conformal invariance of (0,2) models. Nucl. Phys. B 444, 161–190 (1995). https://doi.org/10.1016/0550-3213(95)00186-V. arXiv:hep-th/9503212

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Basu, A., Sethi, S.: World sheet stability of (0,2) linear sigma models. Phys. Rev. D 68, 025003 (2003). https://doi.org/10.1103/PhysRevD.68.025003. arXiv:hep-th/0303066

    Article  ADS  MathSciNet  Google Scholar 

  97. Beasley, C., Witten, E.: Residues and world sheet instantons. JHEP 10, 065 (2003). https://doi.org/10.1088/1126-6708/2003/10/065. arXiv:hep-th/0304115

    Article  ADS  MathSciNet  Google Scholar 

  98. Bertolini, M., Plesser, M.R.: Worldsheet instantons and (0,2) linear models. JHEP 08, 081 (2015). https://doi.org/10.1007/JHEP08(2015)081. arXiv:1410.4541

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Tan, M.-C., Yagi, J.: Chiral algebras of (0,2) sigma models: beyond perturbation theory. Lett. Math. Phys. 84, 257–273 (2008). https://doi.org/10.1007/s11005-008-0249-4. arXiv:0801.4782

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Gaiotto, D., Rapčák, M.: Vertex Algebras at the Corner. arXiv:1703.00982

  101. Procházka, T., Rapčák, M.: Webs of W-algebras. JHEP 11, 109 (2018). https://doi.org/10.1007/JHEP11(2018)109.arXiv:1711.06888

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Feigin, B., Gukov, S.: VOA[\(M_4\)]. arXiv:1806.02470

  103. Dimofte, T., Paquette, N.M.: (0,2) Dualities and the 4-simplex. JHEP 08, 132 (2019). https://doi.org/10.1007/JHEP08(2019)132. arXiv:1905.05173

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Gukov, S., Putrov, P., Vafa, C.: Fivebranes and 3-manifold homology. JHEP 07, 071 (2017). https://doi.org/10.1007/JHEP07(2017)071. arXiv:1602.05302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Bullimore, M., Ferrari, A.: Twisted Hilbert spaces of 3D supersymmetric gauge theories. JHEP 08, 018 (2018). https://doi.org/10.1007/JHEP08(2018)018. arXiv:1802.10120

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Gadde, A., Gukov, S., Putrov, P.: Duality Defects. arXiv:1404.2929

  107. Lawrie, C., Schafer-Nameki, S., Weigand, T.: Chiral 2d theories from N = 4 SYM with varying coupling. JHEP 04, 111 (2017). https://doi.org/10.1007/JHEP04(2017)111. arXiv:1612.05640

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Gukov, S.: Trisecting non-Lagrangian theories. JHEP 11, 178 (2017). https://doi.org/10.1007/JHEP11(2017)178. arXiv:1707.01515

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Witten, E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B 500, 3–42 (1997). https://doi.org/10.1016/S0550-3213(97)00416-1. arXiv:hep-th/9703166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). https://doi.org/10.1007/s00220-010-1071-2. arXiv:0807.4723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Gaiotto, D.: N=2 dualities. JHEP 08, 034 (2012). https://doi.org/10.1007/JHEP08(2012)034. arXiv:0904.2715

    Article  ADS  Google Scholar 

  112. Terashima, Y., Yamazaki, M.: SL(2, R) Chern-Simons, Liouville, and Gauge theory on duality walls. JHEP 08, 135 (2011). https://doi.org/10.1007/JHEP08(2011)135. arXiv:1103.5748

    Article  ADS  MATH  Google Scholar 

  113. Cecotti, S., Cordova, C., Vafa, C.: Braids, Walls, and Mirrors. arXiv:1110.2115

  114. Dimofte, T., Gaiotto, D., Gukov, S.: 3-Manifolds and 3d indices. Adv. Theor. Math. Phys. 17, 975–1076 (2013). https://doi.org/10.4310/ATMP.2013.v17.n5.a3. arXiv:1112.5179

    Article  MathSciNet  MATH  Google Scholar 

  115. Gang, D., Tachikawa, Y., Yonekura, K.: Smallest 3d hyperbolic manifolds via simple 3d theories. Phys. Rev. D 96, 061701 (2017). https://doi.org/10.1103/PhysRevD.96.061701. arXiv:1706.06292

    Article  ADS  Google Scholar 

  116. Gang, D., Yonekura, K.: Symmetry enhancement and closing of knots in 3d/3d correspondence. JHEP 07, 145 (2018). https://doi.org/10.1007/JHEP07(2018)145. arXiv:1803.04009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Gukov, S., Pei, D., Putrov, P., Vafa, C.: BPS spectra and 3-manifold invariants. arXiv:1701.06567

  118. Eckhard, J., Kim, H., Schafer-Nameki, S., Willett, B.: Higher-Form Symmetries, Bethe Vacua, and the 3d-3d Correspondence. arXiv:1910.14086

  119. Chun, S., Gukov, S., Park, S., Sopenko, N.: 3d-3d correspondence for mapping tori. arXiv:1911.08456

  120. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras. Duke Math. J. 76, 365–416 (1994). https://doi.org/10.1215/S0012-7094-94-07613-8

    Article  MathSciNet  MATH  Google Scholar 

  121. Dedushenko, M., Gukov, S., Putrov, P.: Vertex algebras and 4-manifold invariants. In: Proceedings, Nigel Hitchin’s 70th Birthday Conference : Geometry and Physics: A Festschrift in Honour of Nigel Hitchin: 2 volumes: Aarhus, Denmark, Oxford, UK, Madrid, Spain, September 5–16, 2016, vol. 1, pp. 249–318 (2018). https://doi.org/10.1093/oso/9780198802013.003.0011. arXiv:1705.01645

  122. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989). https://doi.org/10.1007/BF01217730

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Reshetikhin, N., Turaev, V.G.: Invariants of three manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991). https://doi.org/10.1007/BF01239527

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Gukov, S., Manolescu, C.: A two-variable series for knot complements. arXiv:1904.06057

  125. Park, S.: Higher rank \(\hat{Z}\) and \(F_K\). arXiv:1909.13002

  126. Chung, H.-J.: BPS Invariants for Seifert Manifolds. arXiv:1811.08863

  127. Cheng, M.C.N., Chun, S., Ferrari, F., Gukov, S., Harrison, S.M.: 3d modularity. JHEP 10, 010 (2019). https://doi.org/10.1007/JHEP10(2019)010. arXiv:1809.10148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. Cheng, M.C.N., Ferrari, F., Sgroi, G.: Three-Manifold Quantum Invariants and Mock Theta Functions. arXiv:1912.07997

  129. Silverstein, E., Witten, E.: Global U(1) R symmetry and conformal invariance of (0,2) models. Phys. Lett. B 328, 307–311 (1994). https://doi.org/10.1016/0370-2693(94)91484-2. arXiv:hep-th/9403054

    Article  ADS  MathSciNet  Google Scholar 

  130. Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, vol. 1. Cambridge University Press (2016)

    Book  MATH  Google Scholar 

  131. Warner, N.P.: Supersymmetry in boundary integrable models. Nucl. Phys. B 450, 663–694 (1995). https://doi.org/10.1016/0550-3213(95)00402-E. arXiv:hep-th/9506064

    Article  ADS  MathSciNet  MATH  Google Scholar 

  132. Kachru, S., Tripathy, A.: The Hodge-elliptic genus, spinning BPS states, and black holes. Commun. Math. Phys. 355, 245–259 (2017). https://doi.org/10.1007/s00220-017-2910-1. arXiv:1609.02158

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. Kachru, S., Tripathy, A.: BPS jumping loci and special cycles. arXiv:1703.00455

  134. Beilinson, A., Drinfeld, V., Drinfeld, V.: Chiral Algebras, vol. 51. American Mathematical Society (2004)

    MATH  Google Scholar 

  135. Arakawa, T.: A remark on the \(C_2\)-cofiniteness condition on vertex algebras. Math. Z. 270, 559–575 (2012). https://doi.org/10.1007/s00209-010-0812-4

    Article  MathSciNet  MATH  Google Scholar 

  136. Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253 (1982). https://doi.org/10.1016/0550-3213(82)90071-2

    Article  ADS  MathSciNet  Google Scholar 

  137. Work in progress with N. Paquette (2020)

  138. Dine, M., Seiberg, N.: (2,0) SUPERSPACE. Phys. Lett. B 180, 364–369 (1986). https://doi.org/10.1016/0370-2693(86)91203-7

    Article  ADS  MathSciNet  Google Scholar 

  139. Witten, E.: Phases of N=2 theories in two-dimensions. Nucl. Phys. B 403, 159–222 (1993). https://doi.org/10.1016/0550-3213(93)90033-L. arXiv:hep-th/9301042

    Article  ADS  MathSciNet  MATH  Google Scholar 

  140. McOrist, J.: The revival of (0,2) linear sigma models. Int. J. Mod. Phys. A 26, 1–41 (2011). https://doi.org/10.1142/S0217751X11051366. arXiv:1010.4667

    Article  ADS  MathSciNet  MATH  Google Scholar 

  141. Costello, K., Witten, E., Yamazaki, M.: Gauge Theory and Integrability, I. arXiv:1709.09993

  142. Borokhov, V., Kapustin, A., Wu, X.-K.: Topological disorder operators in three-dimensional conformal field theory. JHEP 11, 049 (2002). https://doi.org/10.1088/1126-6708/2002/11/049. arXiv:hep-th/0206054

    Article  ADS  MathSciNet  Google Scholar 

  143. Borokhov, V., Kapustin, A., Wu, X.-K.: Monopole operators and mirror symmetry in three-dimensions. JHEP 12, 044 (2002). https://doi.org/10.1088/1126-6708/2002/12/044. arXiv:hep-th/0207074

    Article  ADS  MathSciNet  Google Scholar 

  144. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222

  145. Witten, E.: Fivebranes and Knots. arXiv:1101.3216

  146. Gwilliam, O., Williams, B.R.: A one-loop exact quantization of Chern–Simons theory. arXiv preprint arXiv:1910.05230 (2019)

  147. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  148. Friedan, D., Shenker, S.H.: The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B 281, 509–545 (1987). https://doi.org/10.1016/0550-3213(87)90418-4

    Article  ADS  MathSciNet  Google Scholar 

  149. Axelrod, S., Della Pietra, S., Witten, E.: Geometric quantization of Chern–Simons gauge theory. J. Differ. Geom. 33, 787–902 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  150. Hitchin, N.J.: Flat connections and geometric quantization. Commun. Math. Phys. 131, 347–380 (1990). https://doi.org/10.1007/BF02161419

    Article  ADS  MathSciNet  MATH  Google Scholar 

  151. Kumar, S.: Demazure character formula in arbitrary Kac–Moody setting. Invent. math. 89, 395–423 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. Mathieu, O.: Formules de caractères pour les algèbres de Kac–Moody gènèrales. Astèrisque 159, 160 (1988)

    MATH  Google Scholar 

  153. Cliff, E., Kremnitzer, K.: Work in progress

  154. Serre, J.-P.: Un théoreme de dualité. Commentarii Mathematici Helvetici 29, 9–26 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  155. Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence (2016)

  156. Faltings, G.: Algebraic loop groups and moduli spaces of bundles. J. Eur. Math. Soc. 5, 41–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  157. Teleman, C.: Borel–Weil–Bott theory on the moduli stack of g-bundles over a curve. Invent. math. 134, 1–57 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Natalie Paquette and Sam Raskin for useful discussions. This research was supported in part by a grant from the Krembil Foundation. K.C. and D.G. are supported by the NSERC Discovery Grant program and by the Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities. The work of T.D. was supported by NSF CAREER Grant DMS-1753077. T.D.’s work was performed in part at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611, as well as during visits to the Perimeter Institute. The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Dimofte.

Additional information

Communicated by Horng-Tzer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costello, K., Dimofte, T. & Gaiotto, D. Boundary Chiral Algebras and Holomorphic Twists. Commun. Math. Phys. 399, 1203–1290 (2023). https://doi.org/10.1007/s00220-022-04599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04599-0

Navigation