Skip to main content
Log in

Ward Identities in the \(\mathfrak {sl}_3\) Toda Conformal Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Toda conformal field theories are natural generalizations of Liouville conformal field theory that enjoy an enhanced level of symmetry. In Toda conformal field theories this higher-spin symmetry can be made explicit, thanks to a path integral formulation of the model based on a Lie algebra structure. The purpose of the present document is to explain how this higher level of symmetry can manifest itself within the rigorous probabilistic framework introduced by R. Rhodes, V. Vargas and the first author in Cerclé (Probabilistic construction of simply-laced Toda conformal field theories, arXiv preprint, arXiv:2102.11219, 2021). One of its features is the existence of holomorphic currents that are introduced via a rigorous derivation of the Miura transformation. More precisely, we prove that the spin-three Ward identities, that encode higher-spin symmetry, hold in the \(\mathfrak {sl}_3\) Toda conformal field theory; as an original input we provide explicit expressions for the descendent fields which were left unidentified in the physics literature. This representation of the descendent fields provides a new systematic method to find the degenerate fields of the \(\mathfrak {sl}_3\) Toda (and Liouville) conformal field theory, which in turn implies that certain four-point correlation functions are solutions of a hypergeometric differential equation of the third order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Unless explicitly stated, holomorphic derivatives will be considered throughout the rest of the document.

  2. Note that the expression for Q differs from the one in Liouville theory because of our convention on \(\gamma \). The standard one can be recovered by scaling \(\gamma \) by a multiplicative factor \(\sqrt{2}\). This scaling is due to the fact that the simple roots are not orthonormal but rather satisfy \(\left\langle e_i,e_i \right\rangle =2\).

  3. The interested reader may find details on the role of this transformation in the construction of two-dimensional CFTs having higher-spin symmetry for instance in [17], where the Miura transformation is used to construct representations of W-algebras.

  4. The weights rather belong to the dual space \({\mathfrak {h}}_3^*\) of \({\mathfrak {h}}_3\), but these two spaces may be identified via Riesz representation theorem.

  5. There is a difference here between the form of Eq. (1.22) and what is commonly written down in the physics literature. Indeed it is standard (see e.g. the discussion below Equation (2.8) in [43]) to scale by a multiplicative factor \(i\sqrt{\frac{48}{22+5c}}\) the expression of \(\varvec{{\mathrm {W}}}\), with c the central charge of the theory—and by doing so the expression of the quantum numbers \(w(\alpha )\) and the descendent operators—in order for the WW OPE (the contraction of two W currents) to be written down in an elegant fashion.

  6. This scalar product differs from the Killing form by a multiplicative factor whose value is not relevant in the present document.

  7. Thanks to Riesz representation theorem we will often identify \({\mathfrak {h}}_3\) with its dual space \({\mathfrak {h}}_3^*\).

  8. That is, we apply Stokes’ formula \(\oint _{\partial B(z_0,r)}f(\xi )g(\xi ) \frac{\sqrt{-1}d{\bar{\xi }}}{2}=\int _{B(z_0,r)}\partial _xf(x)g(x)+\partial _xg(x)f(x) d^2x\) to the term \(\partial _{x}\theta _\delta (z_0-x)\left\langle V_{\gamma e_i,\varepsilon }(x)V_{\alpha _0,\varepsilon }(z_0)\varvec{{\mathrm {V}}}_\varepsilon \right\rangle _\delta \).

References

  1. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  2. Belavin, V., Estienne, B., Foda, O., Santachiara, R.: Correlation functions with fusion-channel multiplicity in \(\cal{W}_3\) Toda field theory. JHEP 137 (2016)

  3. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  4. Borcherds, R.: Vertex algebras, Kac-Moody algebras, and the Monster. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 83, pp. 3068–3071 (1986)

  5. Bouwknegt, P., McCarthy, J., Pilch, K.: The W3 Algebra: Modules. Semi-infinite Cohomology and BV Algebras. Springer, Berlin (1996)

    MATH  Google Scholar 

  6. Bouwknegt, P., Schoutens, K.: W symmetry in conformal field theory. Phys. Rep. 223(4), 183–276 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bowcock, P., Watts, G.: Null vectors of the W3 algebra. Phys. Lett. B 297(3), 282–288 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  8. Cerclé, B., Rhodes, R., Vargas, V.: Probabilistic construction of simply-laced Toda conformal field theories. arXiv preprint, arXiv:2102.11219 (2021)

  9. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342, 869 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  10. Ding, J., Dubédat, J., Dunlap, A., Falconet, H.: Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). Publications mathématiques de l’IHÉS 132, 353–403 (2020)

    Article  MathSciNet  Google Scholar 

  11. Dubédat, J.: SLE and the free field: partition functions and couplings. J. AMS 22(4), 995–1054 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  12. Dubédat, J., Falconet, H., Gwynne, E., Pfeffer, J., Sun, X.: Weak LQG metrics and Liouville first passage percolation. Probab. Theory Relat. Fields 178, 369–436 (2020)

    Article  MathSciNet  Google Scholar 

  13. Duplantier, B., Miller, S., Sheffield, J.: Liouville Quantum Gravity as a Mating of Trees, volume 427 of Asterisque. SMF (2021)

  14. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185, 333 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Fateev, V.A., Litvinov, A.V.: On differential equation on four-point correlation function in the conformal Toda field theory. JETP Lett. 81, 594–598 (2005)

    Article  ADS  Google Scholar 

  16. Fateev, V.A., Litvinov, A.V.: Correlation functions in conformal Toda field theory I. JHEP 11, 002 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. Fateev, V.A., Lukyanov, S.L.: The models of two-dimensional conformal quantum field theory with Z(n) symmetry. Int. J. Mod. Phys. A 3, 507 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  18. Fateev, V.A., Zamolodchikov, A.B.: Conformal quantum field theory models in two dimensions having Z3 symmetry. Nucl. Phys. B 280, 644–660 (1987)

    Article  ADS  Google Scholar 

  19. Feigin, B., Fuks, D.: Verma modules over the Virasoro algebra. Funct. Anal. Appl. 17, 241–242 (1983)

    Article  MathSciNet  Google Scholar 

  20. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, volume 88 of Mathematical Surveys and Monographs. American Mathematical Society (2004)

  21. Frenkel, E., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, volume 134 of Pure and Applied Mathematics. Academic Press (1988)

  22. Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Conformal bootstrap in Liouville Theory. arXiv preprint, arXiv:2005.11530 (2020)

  23. Gwynne, E., Miller, J.: Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). Invent. Math. 223, 213–333 (2021)

    Article  MathSciNet  Google Scholar 

  24. Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Springer, Berlin (1972)

    Book  Google Scholar 

  25. Kahane, J.-P.: Sur le chaos multiplicatif. Annales des sciences mathématiques du Québec (1985)

  26. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett. A 3(8), 819–826 (1988)

    Article  ADS  Google Scholar 

  27. Kupiainen, A., Rhodes, R., Vargas, V.: Local conformal structure of liouville quantum gravity. In: Communications in Mathematical Physics (2018)

  28. Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville theory: proof of the DOZZ formula. Ann. Math. 191(1), 81–166 (2020)

    Article  MathSciNet  Google Scholar 

  29. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013)

    Article  MathSciNet  Google Scholar 

  31. Seiberg, N.: Notes on quantum Liouville theory and quantum gravity. Prog. Theor. Phys. Suppl. 102, 319–349 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  32. Oikarinen, J.: Smoothness of correlation functions in Liouville conformal field theory. Ann. Henri Poincaré 20, 2377–2406 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  33. Polyakov, A.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207210 (1981)

    MathSciNet  Google Scholar 

  34. Remy, G.: The Fyodorov–Bouchaud formula and Liouville conformal field theory. Duke Math. J. 169(1), 177–211 (2020)

    Article  MathSciNet  Google Scholar 

  35. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)

    Article  MathSciNet  Google Scholar 

  36. Ridout, D., Siu, S., Wood, S.: Singular vectors for the WN algebras. J. Math. Phys. 59(3), 031701 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  37. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. In: Selected works of Oded Schramm. Volume 1, 2, Selected Work Probability Statistics, pp. 791–858. Springer, New York (2011)

  38. Shamov, A.: On Gaussian multiplicative chaos. J. Funct. Anal. 270(9), 3224–3261 (2016)

    Article  MathSciNet  Google Scholar 

  39. Sheffield, S.: Gaussian free field for mathematicians. Probab. Theory Relat. Fields 139, 521 (2007)

    Article  MathSciNet  Google Scholar 

  40. Teschner, J.: Liouville theory revisited. Class. Quantum Grav. 18(23), R153–R222 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  41. Watts, G.: W-algebras and their representations. In: Horváth, Z., Palla, L. (eds.) Conformal Field Theories and Integrable Models, pp. 55–84. Springer, Berlin (1997)

    Chapter  Google Scholar 

  42. Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. s3–28(4), 738–768 (1974)

    Article  MathSciNet  Google Scholar 

  43. Zamolodchikov, A.B.: Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor. Math. Phys. 65(3), 1205–1213 (1985)

    Article  Google Scholar 

  44. Zhu, T.: Higher order BPZ equations for Liouville conformal field theory. arXiv preprint, arXiv:2001.08476 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Cerclé.

Ethics declarations

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analysed.

Additional information

Communicated by A.Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are indebted to A. Kupiainen, R. Rhodes and V. Vargas for fruitful discussions on Toda theories. Y. Huang is supported by ERC grant QFPROBA, No.741487..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerclé, B., Huang, Y. Ward Identities in the \(\mathfrak {sl}_3\) Toda Conformal Field Theory. Commun. Math. Phys. 393, 419–475 (2022). https://doi.org/10.1007/s00220-022-04370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04370-5

Navigation