Skip to main content
Log in

Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\)

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We study Liouville first passage percolation metrics associated to a Gaussian free field \(h\) mollified by the two-dimensional heat kernel \(p_{t}\) in the bulk, and related star-scale invariant metrics. For \(\gamma \in (0,2)\) and \(\xi = \frac{\gamma }{d_{\gamma }}\), where \(d_{\gamma }\) is the Liouville quantum gravity dimension defined in Ding and Gwynne (Commun. Math. Phys. 374:1877–1934, 2020), we show that renormalized metrics \((\lambda _{t}^{-1} e^{ \xi p_{t} * h} ds)_{t \in (0,1)}\) are tight with respect to the uniform topology. We also show that subsequential limits are bi-Hölder with respect to the Euclidean metric, obtain tail estimates for side-to-side distances, and derive error bounds for the normalizing constants \(\lambda _{t}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Ang, Comparison of discrete and continuum Liouville first passage percolation, Electron. Commun. Probab., 24 (2019), 12.

    MathSciNet  MATH  Google Scholar 

  2. J. Aru, E. Powell and A. Sepúlveda, Critical Liouville measure as a limit of subcritical measures, Electron. Commun. Probab., 24 (2019), 16.

    MathSciNet  MATH  Google Scholar 

  3. N. Berestycki, An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab., 22 (2017), 12.

    MathSciNet  MATH  Google Scholar 

  4. M. Bramson, J. Ding and O. Zeitouni, Convergence in law of the maximum of nonlattice branching random walk, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 1897–1924.

    MathSciNet  MATH  Google Scholar 

  5. M. Bramson, J. Ding and O. Zeitouni, Convergence in law of the maximum of the two-dimensional discrete Gaussian free field, Commun. Pure Appl. Math., 69 (2016), 62–123.

    MathSciNet  MATH  Google Scholar 

  6. D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, Am. Math. Soc., Providence, 2001.

    MATH  Google Scholar 

  7. P. Chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian excursion, Probab. Theory Relat. Fields, 128 (2004), 161–212.

    MathSciNet  MATH  Google Scholar 

  8. G. Da Prato, An Introduction to Infinite-Dimensional Analysis, Universitext, Springer, Berlin, 2006.

    MATH  Google Scholar 

  9. J. Ding and A. Dunlap, Liouville first-passage percolation: subsequential scaling limits at high temperature, Ann. Probab., 47 (2019), 690–742.

    MathSciNet  MATH  Google Scholar 

  10. J. Ding and A. Dunlap, Subsequential scaling limits for Liouville graph distance, Commun. Math. Phys., 376 (2020), 1499–1572.

    MathSciNet  MATH  Google Scholar 

  11. J. Ding and S. Goswami, Upper bounds on Liouville first-passage percolation and Watabiki’s prediction, Commun. Pure Appl. Math., 72 (2019), 2331–2384.

    MathSciNet  MATH  Google Scholar 

  12. J. Ding and E. Gwynne, The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds, Commun. Math. Phys., 374 (2020), 1877–1934.

    MathSciNet  MATH  Google Scholar 

  13. J. Ding and E. Gwynne, Tightness of supercritical Liouville first passage percolation, arXiv:2005.13576v1.

  14. J. Ding and F. Zhang, Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields, Probab. Theory Relat. Fields, 171 (2018), 1157–1188.

    MathSciNet  MATH  Google Scholar 

  15. J. Ding and F. Zhang, Liouville first passage percolation: geodesic length exponent is strictly larger than 1 at high temperatures, Probab. Theory Relat. Fields, 174 (2019), 335–367.

    MathSciNet  MATH  Google Scholar 

  16. J. Ding, O. Zeitouni and F. Zhang, On the Liouville heat kernel for k-coarse MBRW, Electron. J. Probab., 23 (2018), 1–20.

    MathSciNet  MATH  Google Scholar 

  17. J. Ding, O. Zeitouni and F. Zhang, Heat kernel for Liouville Brownian motion and Liouville graph distance, Commun. Math. Phys., 371 (2019), 561–618.

    MathSciNet  MATH  Google Scholar 

  18. J. Dubédat and H. Falconet, Liouville metric of star-scale invariant fields: tails and Weyl scaling, Probab. Theory Relat. Fields, 176 (2020), 293–352.

    MathSciNet  MATH  Google Scholar 

  19. J. Dubédat, H. Falconet, E. Gwynne, J. Pfeffer and X. Sun, Weak LQG metrics and Liouville first passage percolation, Probab. Theory Relat. Fields, 178 (2020), 369–436.

    MathSciNet  MATH  Google Scholar 

  20. H. Duminil-Copin, Introduction to Bernoulli percolation. Lecture notes available on the webpage of the author, 2018.

  21. B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invent. Math., 185 (2011), 333–393.

    MathSciNet  MATH  Google Scholar 

  22. X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, in École d’Été de Probabilités de Saint-Flour, IV-1974, Lecture Notes in Math., vol. 480, pp. 1–96, Springer, Berlin, 1975.

    Google Scholar 

  23. E. Gwynne and J. Miller, Confluence of geodesics in Liouville quantum gravity for \(\gamma \in (0,2)\), Ann. Probab., 48 (2020), 1861–1901.

    MathSciNet  MATH  Google Scholar 

  24. E. Gwynne and J. Miller, Conformal covariance of the Liouville quantum gravity metric for \(\gamma \in (0,2)\), arXiv:1905.00384.

  25. E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\), arXiv:1905.00383.

  26. E. Gwynne and J. Miller, Local metrics of the Gaussian free field, arXiv:1905.00379.

  27. E. Gwynne, N. Holden and X. Sun, A distance exponent for Liouville quantum gravity, Probab. Theory Relat. Fields, 173 (2019), 931–997.

    MathSciNet  MATH  Google Scholar 

  28. E. Gwynne, N. Holden and X. Sun, A mating-of-trees approach for graph distances in random planar maps, Probab. Theory Relat. Fields, 177 (2020), 1043–1102.

    MathSciNet  MATH  Google Scholar 

  29. J.-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Qué., 9 (1985), 105–150.

    MathSciNet  MATH  Google Scholar 

  30. J.-F. Le Gall, The topological structure of scaling limits of large planar maps, Invent. Math., 169 (2007), 621–670.

    MathSciNet  MATH  Google Scholar 

  31. J.-F. Le Gall, Geodesics in large planar maps and in the Brownian map, Acta Math., 205 (2010), 287–360.

    MathSciNet  MATH  Google Scholar 

  32. J.-F. Le Gall, Uniqueness and universality of the Brownian map, Ann. Probab., 41 (2013), 2880–2960.

    MathSciNet  MATH  Google Scholar 

  33. J.-F. Le Gall and F. Paulin, Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal., 18 (2008), 893–918.

    MathSciNet  MATH  Google Scholar 

  34. J.-F. Marckert and A. Mokkadem, Limit of normalized quadrangulations: the Brownian map, Ann. Probab., 34 (2006), 2144–2202.

    MathSciNet  MATH  Google Scholar 

  35. G. Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., 210 (2013), 319–401.

    MathSciNet  MATH  Google Scholar 

  36. J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, 2016, arXiv:1605.03563.

  37. J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, 2016, arXiv:1608.05391.

  38. J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map I: the \({\mathrm{QLE}}(8/3,0)\) metric, Invent. Math., 219 (2020), 75–152.

    MathSciNet  MATH  Google Scholar 

  39. L. D. Pitt, Positively correlated normal variables are associated, Ann. Probab., 10 (1982), 496–499.

    MathSciNet  MATH  Google Scholar 

  40. A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B, 103 (1981), 207–210.

    MathSciNet  Google Scholar 

  41. R. Rhodes and V. Vargas, KPZ formula for log-infinitely divisible multifractal random measures, ESAIM Probab. Stat., 15 (2011), 358–371.

    MathSciNet  MATH  Google Scholar 

  42. R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: a review, Probab. Surv., 11 (2014), 315–392.

    MathSciNet  MATH  Google Scholar 

  43. R. Rhodes and V. Vargas, The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient, Ann. Probab., 47 (2019), 3082–3107.

    MathSciNet  MATH  Google Scholar 

  44. R. Robert and V. Vargas, Gaussian multiplicative chaos revisited, Ann. Probab., 38 (2010), 605–631.

    MathSciNet  MATH  Google Scholar 

  45. L. Russo, A note on percolation, Z. Wahrscheinlichkeitstheor. Verw. Geb., 43 (1978), 39–48.

    MathSciNet  MATH  Google Scholar 

  46. L. Russo, On the critical percolation probabilities, Z. Wahrscheinlichkeitstheor. Verw. Geb., 56 (1981), 229–237.

    MathSciNet  MATH  Google Scholar 

  47. P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math., 3 (1978), 227–245.

    MathSciNet  MATH  Google Scholar 

  48. A. Shamov, On Gaussian multiplicative chaos, J. Funct. Anal., 270 (2016), 3224–3261.

    MathSciNet  MATH  Google Scholar 

  49. V. Tassion, Crossing probabilities for Voronoi percolation, Ann. Probab., 44 (2016), 3385–3398.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. Ding was partially supported by NSF grant DMS-1757479 and an Alfred Sloan fellowship.

J. Dubédat was Partially supported by NSF grant DMS-1512853.

A. Dunlap was partially supported by an NSF Graduate Research Fellowship.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Dubédat, J., Dunlap, A. et al. Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). Publ.math.IHES 132, 353–403 (2020). https://doi.org/10.1007/s10240-020-00121-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-020-00121-1

Navigation