Skip to main content
Log in

Global Well-Posedness of Free Interface Problems for the Incompressible Inviscid Resistive MHD

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the plasma-vacuum interface problem in a horizontally periodic slab impressed by a uniform non-horizontal magnetic field. The lower plasma region is governed by the incompressible inviscid and resistive MHD, the upper vacuum region is governed by the pre-Maxwell equations, and the effect of surface tension is taken into account on the free interface. The global well-posedness of the problem, supplemented with physical boundary conditions, around the equilibrium is established, and the solution is shown to decay to the equilibrium almost exponentially. Our results reveal the strong stabilizing effect of the magnetic field as the global well-posedness of the free-boundary incompressible Euler equations, without the irrotational assumption, around the equilibrium is unknown. One of the key observations here is an induced damping structure for the fluid vorticity due to the resistivity and transversal magnetic field. A similar global well-posedness for the plasma-plasma interface problem is obtained, where the vacuum is replaced by another plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Delort, J.M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. 48(5), 1149–1238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beale, J.: The initial value problem for the Navier–Stokes equations with a free surface. Commun. Pure Appl. Math. 34(3), 359–392 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beale, J.: Large-time regularity of viscous surface waves. Arch. Ration. Mech. Anal.84(4), 307–252 (1983/84)

  4. Caflisch, R.E., Orellana, O.F.: Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20(2), 293–307 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for the free boundary incompressible Euler equations. Ann. Math. (2) 178(3), 1061–1134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Splash singularities for the free boundary Navier–Stokes equations. Ann. PDE5(1), (2019) Art. 12, 117 pp

  7. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics, Clarendon Press, Oxford (1981)

    MATH  Google Scholar 

  8. Cheng, C.H.A., Coutand, D., Shkoller, S.: On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity. Commun. Pure Appl. Math. 61(12), 1715–1752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, C.A., Shkoller, S.: Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on Sobolev-class domains. J. Math. Fluid Mech. 19(3), 375–422 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coulombel, J.F., Morando, A., Secchi, P., Trebeschi, P.: A priori estimates for 3D incompressible current-vortex sheets. Commun. Math. Phys. 311(1), 247–275 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Coutand, D.: Finite-time singularity formation for incompressible Euler moving interfaces in the plane. Arch. Ration. Mech. Anal. 232(1), 337–387 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics., 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  15. Deng, Y., Ionescu, A., Pausader, B., Pusateri, F.: Global solutions of the gravity-capillary water-wave system in three dimensions. Acta Math. 219(2), 213–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ebin, D.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ebin, D.: Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids. Commun. Partial Differ. Equ. 13(10), 1265–1295 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fefferman, C., Ionescu, A., Lie, V.: On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165(3), 417–462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Freidberg, J.P.: Ideal Magnetohydrodynamics. Plenum Press, New York (1987)

    Book  Google Scholar 

  20. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2) 175(2), 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for capillary waves equation. Commun. Pure Appl. Math. 68(4), 625–487 (2015)

    Article  MATH  Google Scholar 

  22. Goedbloed, J., Poedts, S.: Principles of Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  23. Gu, X., Wang, Y.J.: On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations. J. Math. Pures Appl. (9) 128, 1–41 (2019)

  24. Guo, Y., Tice, I.: Local well-posedness of the viscous surface wave problem without surface tension. Anal. PDE 6(2), 287–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, Y., Tice, I.: Almost exponential decay of periodic viscous surface waves without surface tension. Arch. Ration. Mech. Anal. 207(2), 459–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, Y., Tice, I.: Decay of viscous surface waves without surface tension in horizontally infinite domains. Anal. PDE 6(6), 1429–1533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hao, C., Luo, T.: A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 212(3), 805–847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hataya, Y.: Decaying solution of a Navier–Stokes flow without surface tension. J. Math. Kyoto Univ. 49(4), 691–717 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Ionescu, A., Pusateri, F.: Global solutions for the gravity water waves system in 2D. Invent. Math. 199(3), 653–804 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Ionescu, A., Pusateri, F.: Global regularity for 2D water waves with surface tension. Mem. Am. Math. Soc. 256(1227), v+124 pp (2018)

  31. Jang, J., Tice, I.: Instability theory of the Navier–Stokes–Poisson equations. Anal. PDE 6(5), 1121–1181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ladyženskaya, O.A., Solonnikov, V.A.: Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid. Trudy Mat. Inst. Steklov. 59, 115–173 (1960)

    MathSciNet  Google Scholar 

  33. Ladyženskaya, O.A., Solonnikov, V.A.: The linearization principle and invariant manifolds for problems of magnetohydrodynamics. Zap. Naun. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 46–93 (1973)

    MathSciNet  Google Scholar 

  34. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions, J.L., Magenes, E.: Nonhomogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin (1972)

    Book  MATH  Google Scholar 

  36. Morando, A., Trakhinin, Y., Trebeschi, P.: Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD. Q. Appl. Math. 72(3), 549–587 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nalimov, V.I.: The Cauchy-Poisson problem. (Russian) Dinamika Splo\(\breve{s}\)n. Sredy Vyp. 18 Dinamika \(\breve{Z}\)idkost. so Svobod. Granicami. 254, 104–210 (1974)

  38. Padula, M., Solonnikov, V.A.: On the free boundary problem of magnetohydrodynamics. J. Math. Sci. (N.Y.) 178(3), 313–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Roberts, P.H.: An Introduction to Magnetohydrodynamics. Longmans, Green and Co Ltd., London (1967)

    Google Scholar 

  40. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shatah, J., Zeng, C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61(6), 848–876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Solonnikov, V.A.: Solvability of the problem of the motion of a viscous incompressible fluid that is bounded by a free surface. Math. USSR-Izv (1977) 11(6) , 1323–1358 (1978)

  44. Solonnikov, V.A.: Unsteady flow of a finite mass of a fluid bounded by a free surface. J. Soviet Math. 40(5), 672–686 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Solonnikov, V.A.: Free boundary problems of magnetohydrodynamics in multi-connected domains. Interfaces Free Bound. 14(4), 569–602 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Solonnikov, V.A.: On a free boundary problem of magnetohydrodynamics for a viscous incompressible fluid not subjected to capillary forces. Recent advances in partial differential equations and applications, 357–383, Contemp. Math., 666, American Mathematical Society, Providence, RI (2016)

  47. Solonnikov, V.A., Frolova, E.V.: Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval. J. Math. Sci. (N.Y.) 195(1), 76–97 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ströhmer, G.: About an initial-boundary value problem from magnetohydrodynamics. Math. Z. 209, 345–362 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sun, Y., Wang, W., Zhang, Z.: Nonlinear stability of current-vortex sheet to the incompressible MHD equations. Commun. Pure Appl. Math. 71(2), 356–403 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun, Y., Wang, W., Zhang, Z.: Well-posedness of the plasma-vacuum interface problem for ideal incompressible MHD. Arch. Ration. Mech. Anal. 234(1), 81–113 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, Y.J.: Anisotropic decay and global well-posedness of viscous surface waves without surface tension. Adv. Math. 374(2020), 107330, 54 pp

  52. Wang, Y.J.: Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D. Arch. Ration. Mech. Anal. 231(3), 1675–1743 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, Y.J., Tice, I., Kim, C.: The viscous surface-internal wave problem: global well-posedness and decay. Arch. Ration. Mech. Anal. 212(1), 1–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, Y.J., Xin, Z.P.: Vanishing viscosity and surface tension limits of incompressible viscous surface waves. SIAM J. Math. Anal. 53(1), 574–648 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Wu, S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Zhang, P., Zhang, Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for insightful comments and suggestions. This research was supported by Zheng Ge Ru Foundation, HongKong RGC Earmarked Research Grants CUHK14305315, CUHK14302819, CUHK14300917, CUHK14302917, CUHK14300819 and Basic and Applied Basic Research Foundation of Guangdong Province 2020B1515310002. Y. J. Wang was also supported by the National Natural Science Foundation of China (11771360, 12171401) and the Natural Science Foundation of Fujian Province of China (2019J02003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Xin.

Additional information

Communicated by A. Ionescu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Analytic tools

Appendix A. Analytic tools

In this appendix we will collect the analytic tools which are used throughout the paper.

1.1 Harmonic extension

Define the specialized Poisson sum in \( \mathbb {T}^2\times \mathbb {R}\) by (see [53])

$$\begin{aligned} \mathcal {P} f(x) {:}{=} \left\{ \begin{array}{lll} \displaystyle \sum _{\xi \in \mathbb {Z} ^2 } e^{2\pi i \xi \cdot x_h} \sum _{j=0}^m\alpha _j e^{- |\xi |\lambda _jx_3} \hat{f}(\xi ), &{} x_3> 0 \\ \displaystyle \sum _{\xi \in \mathbb {Z} ^2 } e^{2\pi i \xi \cdot x_h} e^{2\pi \left| \xi \right| x_3} \hat{f}(\xi ),&{} x_3\le 0, \end{array}\right. \end{aligned}$$
(A.1)

where

$$\begin{aligned} \hat{f}(\xi ) = \int _{\mathbb {T}^2} f(x_h) e^{-2\pi i \xi \cdot x_h},\quad \xi \in \mathbb {Z}^2 . \end{aligned}$$
(A.2)

Here \(0<\lambda _0<\lambda _1<\cdots<\lambda _m<\infty \) for \(m\in \mathbb {N}\), and \(\alpha =(\alpha _0,\alpha _1,\dots ,\alpha _m)^T\) is the solution to

$$\begin{aligned} V(\lambda _0,\lambda _1,\dots ,\lambda _m)\,\alpha = (1,1,\dots ,1)^T, \end{aligned}$$
(A.3)

where V is the \((m+1) \times (m+1)\) Vandermonde matrix. The Poisson sum (A.1) is specialized in that \(\mathcal {P} f\) is differentially continuous across \(\Sigma \) up to any order as needed provided that m is sufficiently large. Moreover, the following estimate holds.

Lemma A.1

It holds that for all \(s\in \mathbb {R}\),

$$\begin{aligned} \left\| \mathcal {P}f \right\| _{s} \lesssim \left| f\right| _{s-1/2}. \end{aligned}$$
(A.4)

Proof

One may refer to Lemma A.9 of [24] for instance. \(\quad \square \)

1.2 Time extension

The following lemmas allow one to extend the initial data to be time-dependent functions, which are “hyperbolic” versions of the “parabolic” ones in [24] with some minor modifications.

Lemma A.2

Suppose that \(\partial _t^j \eta (0) \in H^{2N-j+3/2}(\Sigma )\) for \(j=0,\dotsc ,2N-1\). There exists an extension \(\eta ^0\) defined on \([0,\infty )\), achieving the initial data, so that

$$\begin{aligned} \sum _{j=0}^{2N+1}\sup _{[0,\infty ]}\left| \partial _t^j \eta ^0\right| ^2_{ {2N-j+3/2}}+\sum _{j=0}^{2N+2} \int _0^\infty \left| \partial _t^j \eta ^0\right| ^2_{ {2N-j +2}} \lesssim \sum _{j=0}^{2N-1} \left| \partial _t^j \eta (0)\right| ^2_{ {2N-j+3/2 }}. \end{aligned}$$
(A.5)

Proof

For each \(j=0,\dotsc ,2N-1\), we denote \(f_j = \partial _t^j \eta (0)\) and let \(\varphi _j \in C_0^\infty (\mathbb {R}^{})\) be such that \(\varphi _j^{(k)}(0) = \delta _{j,k}\) for \(k=0,\dotsc ,2N-1\). Then \(\eta ^0\) is constructed as a sum \(\eta ^0 = \sum _{j=0}^{2N-1} F_j\), where \(F_j\) is defined via its Fourier coefficients:

$$\begin{aligned} \hat{F}_j(\xi ,t) = \varphi _j(t \left\langle \xi \right\rangle ) \hat{f}_j(\xi )\left\langle \xi \right\rangle ^{-j},\ j=0,\dots ,2N-1, \end{aligned}$$

where \(\left\langle \xi \right\rangle = \sqrt{1+ \left| \xi \right| ^2}\). It follows by modifying the proof of Lemma A.5 of [24] suitably that \(\eta ^0\) satisfies the conclusion. \(\quad \square \)

Lemma A.3

Suppose that \(\partial _t^j u(0) \in H^{2N-j}(\Omega _-)\) for \(j=0,\dotsc ,2N-1\). There exists an extension \(u^0\) defined on \([0,\infty )\), achieving the initial data, so that

$$\begin{aligned} \sum _{j=0}^{2N}\sup _{[0,\infty ]}\left\| \partial _t^j u^0\right\| ^2_{ {2N-j}}+\sum _{j=0}^{2N} \int _0^\infty \left\| \partial _t^j u^0\right\| ^2_{ {2N-j +1/2}} \lesssim \sum _{j=0}^{2N-1} \left\| \partial _t^j u(0)\right\| ^2_{ {2N-j }}. \end{aligned}$$
(A.6)

Proof

It follows similarly as Lemma A.2, by using additionally the usual theory of extensions and restrictions in Sobolev spaces between \(H^k(\Omega _-)\) and \(H^k(\mathbb {R}^3)\) for \(k\ge 0\).

\(\square \)

Lemma A.4

Suppose that \(\partial _t^j b(0) \in H^{2N-j+1}(\Omega _-)\) for \(j=0,\dotsc ,2N-1\). There exists an extension \(b^0\) defined on \([0,\infty )\), achieving the initial data, so that

$$\begin{aligned} \sum _{j=0}^{2N+1}\sup _{[0,\infty ]}\left\| \partial _t^j b^0\right\| ^2_{ {2N-j+1}}+\sum _{j=0}^{2N+1} \int _0^\infty \left\| \partial _t^j b^0\right\| ^2_{ {2N-j +3/2}} \lesssim \sum _{j=0}^{2N-1} \left\| \partial _t^j b(0)\right\| ^2_{ {2N-j+1 }}. \end{aligned}$$
(A.7)

Proof

It follows in the same way as Lemma A.3. \(\quad \square \)

1.3 Product estimates

The following standard estimates in Sobolev spaces are needed.

Lemma A.5

Let the domains below be either \(\Omega _\pm \), \(\Sigma \) or \(\Sigma _\pm \), and d be the dimension.

  1. (1)

    Let \(0\le r \le s_1 \le s_2\) be such that \(s_1 > d/2\). Then

    $$\begin{aligned} \left\| fg\right\| _{H^r} \lesssim \left\| f\right\| _{H^{s_1}} \left\| g\right\| _{H^{s_2}}. \end{aligned}$$
    (A.8)
  2. (2)

    Let \(0\le r \le s_1 \le s_2\) be such that \(s_2 >r+ d/2\). Then

    $$\begin{aligned} \left\| fg\right\| _{H^r} \lesssim \left\| f\right\| _{H^{s_1}} \left\| g\right\| _{H^{s_2}}. \end{aligned}$$
    (A.9)

Lemma A.6

It holds that for \(s>5/2\),

$$\begin{aligned} \left\| fg\right\| _{-1} \lesssim \left\| f\right\| _{-1} \left\| g\right\| _{{s}}. \end{aligned}$$
(A.10)

1.4 Poincaré-type inequality

The following Poincaré-type inequality related to \({\bar{B}}\cdot \nabla \) holds.

Lemma A.7

For any constant vector \({\bar{B}} \in \mathbb {R}^3\) with \({\bar{B}}_3\ne 0\), it holds that

$$\begin{aligned} \left\| f\right\| ^2_0 \le \frac{1}{{\bar{B}}_3^2}\left\| ({\bar{B}}\cdot \nabla )f\right\| ^2_0+\left| f\right| ^2_0 \end{aligned}$$
(A.11)

and

$$\begin{aligned} \left| f\right| ^2_0 \le \frac{1}{{\bar{B}}_3^2}\left\| ({\bar{B}}\cdot \nabla )f\right\| ^2_0+\left\| f\right\| ^2_0 . \end{aligned}$$
(A.12)

Proof

It follows by the fundamental theorem of calculus, see Lemma A.4 in [52]. \(\square \)

1.5 Normal trace estimates

The following \(H^{-1/2}\) boundary estimate holds for functions satisfying \(v\in L^2\) and \({{\,\mathrm{div}\,}}^{\varphi }v \in L^2\).

Lemma A.8

Assume that \(\left\| \nabla \varphi \right\| _{L^\infty } \le C\), then

$$\begin{aligned} \left| v \cdot \mathcal {N}\right| _{-1/2}\lesssim \left\| v\right\| _0+\left\| {{\,\mathrm{div}\,}}^{\varphi }v\right\| _0 . \end{aligned}$$
(A.13)

Proof

One may refer to Lemma 3.3 in [24]. \(\quad \square \)

1.6 Hodge-type estimates

The following Hodge-type estimate holds, when the boundary conditions are not specified. Let the domain be either \(\Omega _-\) or \(\Omega +\) or \(\Omega \).

Lemma A.9

Let \(r\ge 1\) be an integer. Then it holds that

$$\begin{aligned} \left\| v\right\| _r\lesssim \left\| v\right\| _{0,r}+\left\| ({\text {curl}}v)_h \right\| _{r-1}+\left\| {\text {div}}v\right\| _{r-1} . \end{aligned}$$
(A.14)

Proof

Notice that (A.14) follows easily for \(r=1\). Now for \(r\ge 2\), applying the previous estimate of \(r=1\) gives that for \(\ell =1,\dots , r\),

$$\begin{aligned} \left\| v\right\| _{\ell ,r-\ell }&\lesssim \left\| v\right\| _{\ell -1,r-\ell +1}+\left\| ({\text {curl}}v)_h\right\| _{\ell -1,r-\ell }+\left\| {\text {div}}v\right\| _{\ell -1,r-\ell } \nonumber \\&\lesssim \left\| v\right\| _{\ell -1,r-\ell +1}+\left\| ({\text {curl}}v)_h\right\| _{r-1}+\left\| {\text {div}}v\right\| _{r-1} . \end{aligned}$$
(A.15)

By an induction argument on \(\ell =1,\dots , r\), one gets (A.14). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xin, Z. Global Well-Posedness of Free Interface Problems for the Incompressible Inviscid Resistive MHD. Commun. Math. Phys. 388, 1323–1401 (2021). https://doi.org/10.1007/s00220-021-04235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04235-3

Navigation