Skip to main content
Log in

State Convertibility in the von Neumann Algebra Framework

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a generalisation of the fundamental state convertibility theorem in quantum information to the context of bipartite quantum systems modelled by commuting semi-finite von Neumann algebras. Namely, we establish a generalisation to this setting of Nielsen’s theorem on the convertibility of quantum states under local operations and classical communication (LOCC) schemes. Along the way, we introduce an appropriate generalisation of LOCC operations and connect the resulting notion of approximate convertibility to the theory of singular numbers and majorisation in von Neumann algebras. As an application of our result in the setting of \(\mathrm {II}_1\)-factors, we show that the entropy of the singular value distribution relative to the unique tracial state is an entanglement monotone in the sense of Vidal, thus yielding a new way to quantify entanglement in that context. Building on previous work in the infinite-dimensional setting, we show that trace vectors play the role of maximally entangled states for general \(\mathrm {II}_1\)-factors. Examples are drawn from infinite spin chains, quasi-free representations of the CAR, and discretised versions of the CCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson, W.: Discretized CCR algebras. J. Oper. Theory 26(2), 225–239 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bény, C., Kempf, A., Kribs, D.W.: Generalization of quantum error correction via the Heisenberg picture. Phys. Rev. Lett. 98, 100502 (2007)

    ADS  Google Scholar 

  4. Bény, C., Kempf, A., Kribs, D.W.: Quantum error correction of observables. Phys. Rev. A 76, 042303 (2007)

    ADS  Google Scholar 

  5. Bény, C., Kempf, A., Kribs, D.W.: Quantum error correction on infinite-dimensional Hilbert spaces. J. Math. Phys. 50(6), 062108 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Berta, M., Furrer, F., Scholz, V.B.: The smooth entropy formalism for von Neumann algebras. J. Math. Phys. 57(1), 015213 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Blecher, D.P., Smith, R.R.: The dual of the Haagerup tensor product. J. Lond. Math. Soc. (2) 45, 126–144 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Chatterjee, A., Smith, R.R.: The central Haagerup tensor product and maps between von Neumann algebras. J. Funct. Anal. 112(1), 97–120 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Chitambar, E., Leung, D., Mancinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys. 328(1), 303–326 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Crann, J., Kribs, D.W., Levene, R.H., Todorov, I.G.: Private algebras in quantum information and infinite-dimensional complementarity. J. Math. Phys. 57(1), 015208 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Davidson, K.R.: \(C^*\)-algebras by Example. Fields Institute Monographs, New York (1996)

    MATH  Google Scholar 

  12. Dereziński, J.: Introduction to representations of the canonical commutation and anticommutation relations. In: Large Coulomb Systems: Lecture Notes on Mathematical Aspects of QED, pp. 63–143. Springer, Berlin (2006)

  13. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  14. Dereziński, J., Meissner, K.A., Napiórkowski, M.: On the energy-momentum spectrum of a homogeneous Fermi gas. Ann. Henri Poincaré 14(1), 1–36 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256(2), 287–303 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Dykema, K., Paulsen, V., Prakash, J.: Non-closure of the set of quantum correlations via graphs. Commun. Math. Phys. 365(3), 1125–1142 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Fack, T., Kosaki, H.: Generalised \(s\)-numbers of \(\tau \)-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)

    MATH  Google Scholar 

  18. Faddeev, L.: Discrete Heisenberg–Weyl group and modular group. Lett. Math. Phys. 34, 249 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Haag, R.: Local Quantum Physics. Fields, Particles Algebras. Texts and Monographs in Physics. Springer, Berlin (1992)

    MATH  Google Scholar 

  20. Haagerup, U.: Decomposition of completely bounded maps on operator algebras. Unpublished Manuscript

  21. Haagerup, U.: The standard form of von Neumann algebras. Math. Scand. 37, 271–283 (1975)

    MathSciNet  MATH  Google Scholar 

  22. Haagerup, U., Musat, M.: As asymptotic property of factorizable completely positive maps and the Connes embedding problem. Commun. Math. Phys. 338, 721–752 (2015)

    ADS  MATH  Google Scholar 

  23. Hiai, F.: Majorization and stochastic maps in von Neumann algebras. J. Math. Anal. Appl. 127, 18–48 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Hiai, F.: Spectral relations and unitary mixing in semifinite von Neumann algebras. Hokkaido Math. J. 17(1), 117–137 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Hiai, F.: Quantum \(f\)-divergences in von Neumann algebras I. Standard \(f\)-divergences. J. Math. Phys. 59(10), 102202 (2018), 27 pp.

  26. Hiai, F.: Quantum \(f\)-divergences in von Neumann algebras II. Maximal \(f\)-divergences. J. Math. Phys. 60(1), 012203 (2019), 30 pp.

  27. Hollands, S., Sanders, K.: Entanglement measures and their properties in quantum field theory. In: Springer Briefs in Mathematical Physics, vol. 34. Springer, Berlin (2018)

  28. Ji, Z., Natarajan, A., Vidick, T., Wright, J., Yuen, H.: MIP\(^*=\text{RE}\). arXiv:2001.04383

  29. Junge, M., Navascues, M., Palazuelos, C., Perez-Garcia, D., Scholz, V.B., Werner, R.F.: Connes’ embedding problem and Tsirelson’s problem. J. Math. Phys. 52(1), 012102 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306, 695–746 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Keyl, M., Schlingemann, D., Werner, R.F.: Infinitely entangled states. Quantum Inf. Comput. 3(4), 281–306 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Keyl, M., Matsui, T., Schlingemann, D., Werner, R.F.: Entanglement Haag-duality and type properties of infinite quantum spin chains. Rev. Math. Phys. 18(9), 935–970 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, Volume II: Advanced theory. AMS Grad. Studies in Math. vol. 16 (1997)

  34. Kretschmann, D., Schlingemann, D., Werner, R.F.: A continuity theorem for Stinespring’s dilation. J. Funct. Anal. 255, 1889–1904 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Kuperberg, G.: The capacity of hybrid quantum memory. IEEE Trans. Inf. Theory 49(6), 1465–1473 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Lo, H.-K., Popescu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63(2), 022301 (2001)

    ADS  Google Scholar 

  37. Longo, R.: On Landauer’s principle and bound for infinite systems. Commun. Math. Phys. 363(2), 531–560 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Longo, R., Xu, F.: Relative entropy in CFT. Adv. Math. 337, 139–170 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Nielsen, M.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    ADS  Google Scholar 

  40. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Texts and Monographs in Physics. Springer, Berlin (1993)

    MATH  Google Scholar 

  41. Owari, M., Braunstein, S.L., Nemoto, K., Murao, M.: \(\varepsilon \)-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems. Quantum Inf. Comput. 8(1 & 2), 30–52 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Paulsen, V.I.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  43. Paulsen, V.I., Severini, S., Stahlke, D., Todorov, I.G., Winter, A.: Estimating quantum chromatic numbers. J. Funct. Anal. 270(6), 2188–2222 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Popescu, S., Rohrlich, D.: Thermodynamics and the measure of entanglement. Phys. Rev. A (3) 56(5), R3319–R3321 (1997)

    ADS  MathSciNet  Google Scholar 

  45. Slawny, J.: On factor representations and the \(C^*\)-algebra of canonical commutation relations. Commun. Math. Phys. 24, 151–170 (1972)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Slofstra, W.: Tsirelson’s problem and an embedding theorem for groups arising from non-local games. J. Am. Math. Soc. 33(1), 1–56 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Takesaki, M.: Theory of Operator Algebras I. Encyclopedia of Mathematical Sciences, vol. 124. Springer, Berlin (2002)

    MATH  Google Scholar 

  48. Takesaki, M.: Theory of Operator Algebras II. Encyclopedia of Mathematical Sciences, vol. 125. Springer, Berlin (2003)

    MATH  Google Scholar 

  49. van Erven, T., Harremoës, P.: Rényi Divergence and majorization. In: 2010 IEEE International Symposium on Information Theory, Conference Proceedings. https://doi.org/10.1109/ISIT.2010.5513784

  50. Verch, R., Werner, R.F.: Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys. 17(5), 545–576 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Vidal, G.: Entanglement monotones. J. Modern Opt. 47(2–3), 355–376 (2000)

    ADS  MathSciNet  Google Scholar 

  52. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the reviewers’ comments, which improved the overall presentation of the paper. J.C. was partially supported by NSERC Discovery Grant RGPIN-2017-06275. D.W.K. was partly supported by NSERC Discovery Grant 400160 and by a Royal Society Grant allowing research visits to Queen’s University Belfast. R.H.L. was partly supported by UCD Seed Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Crann.

Additional information

Communicated by M. M. Wolf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crann, J., Kribs, D.W., Levene, R.H. et al. State Convertibility in the von Neumann Algebra Framework. Commun. Math. Phys. 378, 1123–1156 (2020). https://doi.org/10.1007/s00220-020-03803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03803-3

Navigation