Skip to main content
Log in

Improved Eigenvalue Bounds for Schrödinger Operators with Slowly Decaying Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We extend a result of Davies and Nath (J Comput Appl Math 148(1):1–28, 2002) on the location of eigenvalues of Schrödinger operators with slowly decaying complex-valued potentials to higher dimensions. In this context, we also discuss various examples related to the Laptev and Safronov conjecture (Laptev and Safronov in Commun Math Phys 292(1):29–54, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that \(\Vert V_n^{\frac{1}{2}}\psi _n\Vert _2\) is finite in view of Sobolev embedding.

  2. Similarly, the previous example could also be regarded as a simplified one-dimensional version.

References

  1. Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues and resonances. J. Phys. A 34(1), 57–72 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bögli, S.: Schrödinger operator with non-zero accumulation points of complex eigenvalues. Commun. Math. Phys. 352(2), 629–639 (2017)

    Article  ADS  Google Scholar 

  3. Cuenin, J.-C.: Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials. J. Funct. Anal. 272(7), 2987–3018 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cuenin, J.-C.: Embedded eigenvalues for generalized Schrödinger operators, 18 pages (2017). arXiv:1709.06989

  5. Davies, E.B., Nath, J.: Schrödinger operators with slowly decaying potentials. J. Comput. Appl. Math., 148(1):1–28 (2002) (on the occasion of the 65th birthday of Professor Michael Eastham)

    Article  ADS  MathSciNet  Google Scholar 

  6. Demuth, M., Hansmann, M., Katriel, G.: On the discrete spectrum of non-selfadjoint operators. J. Funct. Anal. 257(9), 2742–2759 (2009)

    Article  MathSciNet  Google Scholar 

  7. Demuth, M., Hansmann, M., Katriel, G.: Eigenvalues of non-selfadjoint operators: a comparison of two approaches. In: Mathematical Physics, Spectral Theory and Stochastic Analysis, volume 232 of Operator Theory Advances Applications. Birkhäuser/Springer Basel AG, Basel, pp. 107–163 (2013)

    Chapter  Google Scholar 

  8. Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances. Graduate Studies in Mathematics, vol. 200. American Mathematical Society (2019)

  9. Fanelli, L., Krejčiřík, D., Vega, L.: Absence of eigenvalues of two-dimensional magnetic Schrödinger operators. J. Funct. Anal. 275(9), 2453–2472 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fanelli, L., Krejčiřík, D., Vega, L.: Spectral stability of Schrödinger operators with subordinated complex potentials. J. Spectr. Theory 8(2), 575–604 (2018)

    Article  MathSciNet  Google Scholar 

  11. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)

    Article  MathSciNet  Google Scholar 

  12. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. III. Trans. Am. Math. Soc. 370(1), 219–240 (2018)

    Article  Google Scholar 

  13. Frank, R.L., Laptev, A., Lieb, E.H., Seiringer, R.: Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 77(3), 309–316 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Frank, R.L., Laptev, A., Safronov, O.: On the number of eigenvalues of Schrödinger operators with complex potentials. ArXiv e-prints, Jan. (2016)

    Article  MathSciNet  Google Scholar 

  15. Frank, R.L., Sabin, J.: Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Am. J. Math. 139(6), 1649–1691 (2017)

    Article  MathSciNet  Google Scholar 

  16. Frank, R.L., Simon, B.: Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory 7(3), 633–658 (2017)

    Article  MathSciNet  Google Scholar 

  17. Guillarmou, C., Hassell, A., Krupchyk, K.: Eigenvalue bounds for non-self-adjoint Schrödinger operators with non-trapping metrics. ArXiv e-prints, Sept (2017)

  18. Hundertmark, D., Lieb, E.H., Thomas, L.E.: A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator. Adv. Theor. Math. Phys. 2(4), 719–731 (1998)

    Article  MathSciNet  Google Scholar 

  19. Ionescu, A.D., Jerison, D.: On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal. 13(5), 1029–1081 (2003)

    Article  MathSciNet  Google Scholar 

  20. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    Article  MathSciNet  Google Scholar 

  21. Laptev, A., Safronov, O.: Eigenvalue estimates for Schrödinger operators with complex potentials. Commun. Math. Phys. 292(1), 29–54 (2009)

    Article  ADS  Google Scholar 

  22. Lee, Y., Seo, I.: A note on eigenvalue bounds for Schrödinger operators. J. Math. Anal. Appl. 470(1), 340–347 (2019)

    Article  MathSciNet  Google Scholar 

  23. Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the schrodinger hamiltonian and their relation to sobolev inequalities. In: Studies in Mathematical Physics. Princeton University Press (1976)

  24. Mizutani, H.: Eigenvalue bounds for non-self-adjoint Schrödinger operators with the inverse-square potential. ArXiv e-prints, July (2016)

  25. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J. Princeton Mathematical Series, No. 32 (1971)

Download references

Acknowledgements

The author gratefully acknowledges the hospitality of the Institut Mittag-Leffler and the invitation to the thematic program Spectral Methods in Mathematical Physics. The present article was written during the authors stay. The idea to use Lemma 4 and the proof thereof is attributed to Chris Sogge, to whom the author is thankful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Cuenin.

Additional information

Communicated by W. Schlag

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuenin, JC. Improved Eigenvalue Bounds for Schrödinger Operators with Slowly Decaying Potentials. Commun. Math. Phys. 376, 2147–2160 (2020). https://doi.org/10.1007/s00220-019-03635-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03635-w

Navigation