Skip to main content

Eigenvalues of Non-selfadjoint Operators: A Comparison of Two Approaches

  • Conference paper
  • First Online:
Mathematical Physics, Spectral Theory and Stochastic Analysis

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 232))

Abstract

The central problem we consider is the distribution of eigenvalues of closed linear operators which are not selfadjoint, with a focus on those operators which are obtained as perturbations of selfadjoint linear operators. Two methods are explained and elaborated. One approach uses complex analysis to study a holomorphic function whose zeros can be identified with the eigenvalues of the linear operator. The second method is an operator theoretic approach involvingthe numerical range. General results obtained by the two methods are derived and compared. Applications to non-selfadjoint Jacobi and Schrödinger operators are considered. Some possible directions for future research are discussed.

Mathematics Subject Classification (2010). 47A10, 47A75, 47B36, 81Q12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Abramov, A. Aslanyan, and E.B. Davies. Bounds on complex eigenvalues and resonances. J. Phys. A, 34(1):57–72, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Bhatia and Ch. Davis. Perturbation of extended enumerations of eigenvalues. Acta Sci. Math. (Szeged), 65(1-2):277–286, 1999.

    Google Scholar 

  3. R. Bhatia and L. Elsner. The Hoffman–Wielandt inequality in infinite dimensions. Proc. Indian Acad. Sci. Math. Sci., 104(3):483–494, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Bhatia and K.B. Sinha. A unitary analogue of Kato’s theorem on variation of discrete spectra. Lett. Math. Phys., 15(3):201–204, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Borichev, L. Golinskii, and S. Kupin. A Blaschke-type condition and its application to complex Jacobi matrices. Bull. London Math. Soc., 41:117–123, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Bouldin. Best approximation of a normal operator in the Schatten p-norm. Proc. Amer. Math. Soc., 80(2):277–282, 1980.

    MATH  MathSciNet  Google Scholar 

  7. V. Bruneau and E.M. Ouhabaz. Lieb–Thirringe stimates for non-self-adjoint Schrödinger operators. J. Math. Phys., 49(9):093504, 10, 2008.

    Google Scholar 

  8. E.B. Davies. Linear operators and their spectra. Cambridge University Press, Cambridge, 2007.

    Book  MATH  Google Scholar 

  9. M. Demuth, M. Hansmann, and G. Katriel. On the discrete spectrum of nonselfadjoint operators. J. Funct. Anal., 257:2742–2759, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Demuth, M. Hansmann, and G. Katriel. Lieb–ThirringTy pe Inequalities for Schrödinger Operators with a Complex-Valued Potential. Integral Equations Operator Theory, 75(1):1–5, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Dunford and J.T. Schwartz. Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space. Interscience Publishers John Wiley & Sons New York- London, 1963.

    MATH  Google Scholar 

  12. D.E. Edmunds and W.D. Evans. Spectral theory and differential operators. The Clarendon Press Oxford University Press, New York, 1987.

    MATH  Google Scholar 

  13. K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations. Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  14. S. Favorov and L. Golinskii. A Blaschke-type condition for analytic and subharmonic functions and application to contraction operators. In Linear and complex analysis, volume 226 of American Mathematical Society Translations: Series 2, pages 37–47. Amer. Math. Soc., Providence, RI, 2009.

    Google Scholar 

  15. S. Favorov and L. Golinskii. Blaschke-type conditions in unbounded domains, generalized convexity and applications in perturbation theory. Preprint, arXiv:1204.4283, 2012.

    Google Scholar 

  16. R.L. Frank. Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc., 43(4):745–750, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.L. Frank, A. Laptev, E.H. Lieb, and R. Seiringer. Lieb–Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys., 77(3):309– 316, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  18. M.I. Gil’. Upper and lower bounds for regularized determinants. J. Inequal. Pure Appl. Math., 9(1), 2008.

    Google Scholar 

  19. I.C. Gohberg, S. Goldberg, and M.A. Kaashoek. Classes of linear operators. Vol. I. Birkh¨auser Verlag, Basel, 1990.

    Book  Google Scholar 

  20. I.C. Gohberg, S. Goldberg, and N. Krupnik. Traces and determinants of linear operators. Birkh¨auser Verlag, Basel, 2000.

    Book  Google Scholar 

  21. I.C. Gohbergan d M.G. Krein. Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, Providence, R.I., 1969.

    Google Scholar 

  22. L. Golinskii and S. Kupin. Lieb–Thirringb ounds for complex Jacobi matrices. Lett. Math. Phys., 82(1):79–90, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Golinskii and S. Kupin. A Blaschke-type condition for analytic functions on finitely connected domains. Applications to complex perturbations of a finite-band selfadjoint operator. J. Math. Anal. Appl., 2011. DOI 10.1016/j.jmaa.2011.12.011.

  24. K.E. Gustafson and D.K.M. Rao. Numerical range. Universitext. Springer-Verlag, New York, 1997. The field of values of linear operators and matrices.

    Google Scholar 

  25. M. Hansmann. On the discrete spectrum of linear operators in Hilbert spaces. Dissertation, TU Clausthal, 2010. See “http://nbn-resolving.de/urn:nbn:de:gbv:104- 1097281” for an electronic version.

  26. M. Hansmann. An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrödinger operators. Lett. Math. Phys., 98(1):79–95, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Hansmann. Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators. Preprint, arXiv:1202.1118., 2012.

    Google Scholar 

  28. M. Hansmann and G. Katriel. Inequalities for the eigenvalues of non-selfadjoint Jacobi operators. Complex Anal. Oper. Theory, 5(1):197–218, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Hundertmark. Some bound state problems in quantum mechanics. In Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, volume 76 of Proc. Sympos. Pure Math., pages 463–496. Amer. Math. Soc., Providence, RI, 2007.

    Google Scholar 

  30. D. Hundertmark and B. Simon. Lieb–Thirringi nequalities for Jacobi matrices. J. Approx. Theory, 118(1):106–130, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Kato. Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Amer. Math. Soc., 70:195–211, 1951.

    MATH  MathSciNet  Google Scholar 

  32. T. Kato. Variation of discrete spectra. Comm. Math. Phys., 111(3):501–504, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  34. A. Laptev and O. Safronov. Eigenvalue estimates for Schrödinger operators with complex-valued potentials. Commun. Math. Phys., 292(1):29–54, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Laptev and T. Weidl. Recent results on Lieb-Thirringin equalities. In Journées “ Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), pages Exp. No. XX, 14. Univ. Nantes, Nantes, 2000.

    Google Scholar 

  36. E.H. Lieb and W. Thirring. Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett., 35:687–689, 1975.

    Article  Google Scholar 

  37. J. Mawhin. Spectra in mathematics and in physics: From the dispersion of light to nonlinear eigenvalues. In CIM Bulletin, No. 29, pages 03–13. Centro Internacional de Matemática, 2011.

    Google Scholar 

  38. A. Pietsch. Eigenvalues and s-numbers, volume 43 of Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology]. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987.

    Google Scholar 

  39. Ch. Pommerenke. Boundary behaviour of conformal maps. Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  40. W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.

    MATH  Google Scholar 

  41. O. Safronov. Estimates for eigenvalues of the Schrödinger operator with a complex potential. Bull. Lond. Math. Soc., 42(3):452–456, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  42. O. Safronov. On a sum rule for Schrödinger operators with complex potentials. Proc. Amer. Math. Soc., 138(6):2107–2112, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  43. B. Simon. Notes on infinite determinants of Hilbert space operators. Advances in Math., 24(3):244–273, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  44. B. Simon. Trace ideals and their applications. American Mathematical Society, Providence, RI, second edition, 2005.

    MATH  Google Scholar 

  45. D.R. Yafaev. Mathematical scattering theory. American Mathematical Society, Providence, RI, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Demuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Demuth, M., Hansmann, M., Katriel, G. (2013). Eigenvalues of Non-selfadjoint Operators: A Comparison of Two Approaches. In: Demuth, M., Kirsch, W. (eds) Mathematical Physics, Spectral Theory and Stochastic Analysis. Operator Theory: Advances and Applications(), vol 232. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0591-9_2

Download citation

Publish with us

Policies and ethics