Skip to main content
Log in

Striated Regularity of 2-D Inhomogeneous Incompressible Navier–Stokes System with Variable Viscosity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the global existence and uniqueness of strong solutions to 2D incompressible inhomogeneous Navier–Stokes equations with viscous coefficient depending on the density and with initial density being discontinuous across some smooth interface. Compared with the previous results for the inhomogeneous Navier–Stokes equations with constant viscosity, the main difficulty here lies in the fact that the \(L^1\) in time Lipschitz estimate of the velocity field can not be obtained by energy method (see Danchin and Mucha in The incompressible Navier–Stokes equations in vacuum; Liao and Zhang in Arch Ration Mech Anal 220:937–981, 2016; Commun Pure Appl Math 72:835–884, 2019 for instance). Motivated by the key idea of Chemin to solve 2-D vortex patch of ideal fluid (Chemin in Invent Math 103:599–629, 1991; Ann Sci École Norm Sup 26(4):517–542, 1993), namely, striated regularity can help to get the \(L^\infty \) boundedness of the double Riesz transform, we derive the a priori\(L^1\) in time Lipschitz estimate of the velocity field under the assumption that the viscous coefficient is close enough to a positive constant in the bounded function space. As an application, we shall prove the propagation of \(H^{\frac{5}{2}}\) regularity of the interface between fluids with different densities and viscosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi, H., Gui, G., Zhang, P.: Well-posedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillatory initial velocity field. J. Math. Pures Appl. 100(9), 166–203 (2013)

    Article  MathSciNet  Google Scholar 

  2. Abidi, H., Zhang, P.: On the well-posedness of 2-D density-dependent Navier–Stokes system with variable viscosity. J. Differential Equ. 259, 3755–3802 (2015)

    Article  ADS  Google Scholar 

  3. Abidi, H., Zhang, P.: Global well-posedness of 3-D density-dependent Navier–Stokes system with variable viscosity. Sci. China Math. 58, 1129–1150 (2015)

    Article  MathSciNet  Google Scholar 

  4. Abidi, H., Zhang, P.: On the global well-posedness of 2-D Boussinesq system with variable viscosity. Adv. Math. 305, 1202–1249 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften 343. Springer-Verlag, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  6. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14(4), 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  7. Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Splash singularities for the free boundary Navier–Stokes equations. arXiv:1504.02775

  8. Chemin, J.-Y.: Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel. Invent. Math. 103, 599–629 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chemin, J.-Y.: Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. 26(4), 517–542 (1993)

    Article  MathSciNet  Google Scholar 

  10. Chemin, J.-Y.: Perfect Incompressible Fluids Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, New York (1998)

    Google Scholar 

  11. Coifman, R., Lions, P.L., Meyer, Y., Semmes, S.: Compensated–Compactness and Hardy spaces. J. Math. Pure Appl. 72, 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Danchin, R., Mucha, P.-B.: A Lagrangian approach for the incompressible Navier–Stokes equations with variable density. Commun. Pure Appl. Math. 65, 1458–1480 (2012)

    Article  MathSciNet  Google Scholar 

  13. Danchin, R., Mucha, P.-B.: The incompressible Navier–Stokes equations in vacuum. arXiv:1705.06061

  14. Danchin, R., Zhang, X.: Global persistence of geometrical structures for the Boussinesq equation with no diffusion. Commun. Partial Differential Equ. 42, 68–99 (2017)

    Article  MathSciNet  Google Scholar 

  15. Danchin, R., Zhang, X.: On the persistence of Hölder regular patches of density for the inhomogeneous Navier–Stokes equations. J. Éc. Polytech. Math. 4, 781–811 (2017)

    Article  MathSciNet  Google Scholar 

  16. Desjardins, B.: Regularity results for two-dimensional flows of multiphase viscous fluids. Arch. Rat. Mech. Anal. 137, 135–158 (1997)

    Article  MathSciNet  Google Scholar 

  17. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  Google Scholar 

  18. Gancedo, F., Garcia-Juarez, E.: Global regularity of 2D density patches for inhomogeneous Navier–Stokes. Arch. Ration. Mech. Anal. 229, 339–360 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gancedo, F., Garcia-Juarez, E.: Global regularity for 2D Boussinesq temperature patches with no diffusion. Ann. PDE 3(14), 34 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, 2nd edn. Springer, New York (2008)

    Google Scholar 

  21. Guo, Y., Tice, I.: Decay of viscous surface waves without surface tension in horizontally infinite domains. Anal. PDE 6, 1429–1533 (2013)

    Article  MathSciNet  Google Scholar 

  22. Guo, Y., Tice, I.: Local well-posedness of the viscous surface wave problem without surface tension. Anal. PDE 6, 287–369 (2013)

    Article  MathSciNet  Google Scholar 

  23. Huang, J., Paicu, M.: Decay estimates of global solution to 2D incompressible Navier–Stokes equations with variable viscosity. Discrete Contin. Dyn. Syst. 34, 4647–4669 (2014)

    Article  MathSciNet  Google Scholar 

  24. Huang, J., Paicu, M., Zhang, P.: Global solutions to 2-D incompressible inhomogeneous Navier–Stokes system with general velocity. J. Math. Pures Appl. 100, 806–831 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ladyženskaja, O.A., Solonnikov, V.A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions, 8. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 52, 52–109, 218–219 (1975)

  26. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1933)

    Article  Google Scholar 

  27. Liao, X., Zhang, P.: On the global regularity of 2-D density patch for inhomogeneous incompressible viscous flow. Arch. Ration. Mech. Anal. 220, 937–981 (2016)

    Article  MathSciNet  Google Scholar 

  28. Liao, X., Zhang, P.: Global regularities of 2-D density patch for viscous inhomogeneous incompressible flow with general density: low regularity. Comm. Pure. Appl. Math. 72, 835–884 (2019)

    Article  MathSciNet  Google Scholar 

  29. Lions, P.L.: Mathematical Topics in Fluid Mechanics Oxford Lecture Series in Mathematics and its Applications 3. Oxford University Press, New York (1996)

    Google Scholar 

  30. Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier–Stokes equations with bounded density. Comm. Partial Differential Equ. 38, 1208–1234 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for careful reading and profitable suggestions for the original submissions, especially for pointing out the interesting reference [7]. P. Zhang is partially supported by NSF of China under Grants 11731007 and 11688101, Morningside Center of Mathematics of The Chinese Academy of Sciences and innovation grant from National Center for Mathematics and Interdisciplinary Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Additional information

Communicated by C. De Lellis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. The Commutative Estimate

Let f be a locally integrable function and \(\mathrm{M}f(x)\) be its maximal function given by Definition 5.2. We first recall the following lemma from [17].

Lemma A.1

Let \(p, q\in ]1,\infty [\) or \(p=q=\infty .\) Let \(\{f_j\}_{j\in {{{\mathbb {Z}}}}}\) be a sequence of functions in \(L^p({{\mathbb {R}}}^d)\) so that \(\left( f_j(x)\right) _{\ell ^q({{{\mathbb {Z}}}})}\in L^p({{\mathbb {R}}}^d).\) Then there holds

$$\begin{aligned} \bigl \Vert \left( M(f_j)(x)\right) _{\ell ^q}\bigr \Vert _{L^p}\le C\bigl \Vert \left( f_j(x)\right) _{\ell ^q}\bigr \Vert _{L^p}. \end{aligned}$$

Proposition A.1

Let \(p, r\in ]1,\infty [\) and \(q\in ]1, \infty ]\) satisfying \(\frac{1}{r}=\frac{1}{p}+\frac{1}{q}.\) Let \(X=(X^1,\cdots , X^d)\in \dot{W}^{1,p}({{\mathbb {R}}}^d)\) with \({\mathrm{div}}X=0,\)\(g\in L^q({{\mathbb {R}}}^d),\)\(R_i=\partial _i(-\Delta )^{-\frac{1}{2}}\) be the Riesz transform. Then one has

$$\begin{aligned} \bigl \Vert [\partial _X; R_iR_j]g\bigr \Vert _{L^r}\le C\Vert \nabla X\Vert _{L^p}\Vert g\Vert _{L^q}. \end{aligned}$$
(A.1)

Proof

We first get by, applying Bony’s decomposition (5.2) that

$$\begin{aligned} \begin{aligned}&[\partial _X; R_iR_j]g=[T_{X^k}; R_iR_j]\partial _kg+T_{\partial _kR_iR_jg}X^k-R_iR_j(T_{\partial _kg}X^k)\\&\quad +R(X^k,\partial _kR_iR_jg)-R_iR_j(R(X^k,\partial _kg)). \end{aligned} \end{aligned}$$
(A.2)

In view of (2.27) of [5], one has

$$\begin{aligned} |\Delta _\ell (\partial _kR_iR_jg)(x)|\le C2^\ell \mathrm{M}g(x)\Longrightarrow |S_\ell (\partial _kR_iR_jg)(x)|\le C2^\ell \mathrm{M}g(x), \end{aligned}$$
(A.3)

from which, we infer

$$\begin{aligned} \begin{aligned} \bigl |\Delta _\ell \bigl (T_{\partial _kR_iR_jg}X^k\bigr )(x)\bigr |&\le C\sum _{|\ell '-\ell |\le 4}\mathrm{M}\big (S_{\ell '-1}(\partial _kR_iR_jg)\Delta _{\ell '}X^k\bigr )(x)\\&\le C\sum _{|\ell '-\ell |\le 4}\mathrm{M}\big (\mathrm{M}g 2^{\ell '}\Delta _{\ell '}X^k\bigr )(x). \end{aligned} \end{aligned}$$

As a result, we deduce from Lemma A.1 that

$$\begin{aligned} \begin{aligned} \bigl \Vert T_{\partial _kR_iR_jg}X^k\bigr \Vert _{L^r}&\le C\Bigl \Vert \left\{ \sum _{\ell \in {{{\mathbb {Z}}}}}\bigl [\mathrm{M}\big (\mathrm{M}g 2^{\ell }\Delta _{\ell }X^k\bigr )\bigr ]^2\right\} ^{\frac{1}{2}}\Bigr \Vert _{L^r}\\&\le C\left\| \mathrm{M}g\left\{ \sum _{\ell \in {{{\mathbb {Z}}}}}\bigl [ 2^{\ell }\Delta _{\ell }X^k\bigr ]^2\right\} ^{\frac{1}{2}}\right\| _{L^r}\\&\le C\Vert \mathrm{M}g\Vert _{L^q}\left\| \left\{ \sum _{\ell \in {{{\mathbb {Z}}}}}\bigl [ 2^{\ell }\Delta _{\ell }X^k\bigr ]^2\right\} ^{\frac{1}{2}}\right\| _{L^p}\le C\Vert g\Vert _{L^q}\Vert \nabla X\Vert _{L^p}. \end{aligned} \end{aligned}$$

The same estimate holds for \(T_{\partial _kg}X^k,\) so that we obtain

$$\begin{aligned} \Vert R_iR_j(T_{\partial _kg}X^k)\Vert _{L^r}\le C\Vert T_{\partial _kg}X^k\Vert _{L^r}\le C\Vert g\Vert _{L^q}\Vert \nabla X\Vert _{L^p}. \end{aligned}$$

While due to \({\mathrm{div}}X=0\) and (A.3), we write

$$\begin{aligned} \begin{aligned} |\Delta _\ell R(X^k,\partial _kR_iR_jg)(x)|&=|\partial _k\Delta _\ell R(X^k, R_iR_jg)(x)|\\&\le C2^\ell \mathrm{M}\left( \sum _{\ell '\ge \ell -5}\Delta _{\ell '}X^k\widetilde{\Delta }_{\ell '}R_iR_jg\right) (x)\\&\le C\mathrm{M}\left( \sum _{\ell '\ge \ell -5}2^{\ell -\ell '}|2^{\ell '}\Delta _{\ell '}X^k| \mathrm{M}g\right) (x), \end{aligned} \end{aligned}$$

from which, we infer

$$\begin{aligned} \begin{aligned} \bigl \Vert R(X^k,\partial _kR_iR_jg)\bigr \Vert _{L^r}&\le \Bigl \Vert \Bigl \{\sum _{\ell \in {{{\mathbb {Z}}}}}\bigl [\sum _{\ell '\ge \ell -5}2^{\ell -\ell '}|2^{\ell '}\Delta _{\ell '}X^k| \mathrm{M}g\bigr ]^2\Bigr \}^{\frac{1}{2}}\Bigr \Vert _{L^r}\\&\le C\Bigl \Vert \mathrm{M}g\Bigl \{\sum _{\ell \in {{{\mathbb {Z}}}}}\bigl [ 2^{\ell }\Delta _{\ell }X^k\bigr ]^2\Bigr \}^{\frac{1}{2}}\Bigr \Vert _{L^r}\le C\Vert g\Vert _{L^q}\Vert \nabla X\Vert _{L^p}. \end{aligned} \end{aligned}$$

The same estimate holds for \(R_iR_j(R(X^k,\partial _kg)).\)

Finally let us turn to the first term on the right hand side of (A.2). We first get, by a similar derivation of (5.6), that

$$\begin{aligned}{}[T_{X^k}; R_iR_j]\partial _kg= \sum _{|\ell -\ell '|\le 4}2^{2\ell '}\int _{{{\mathbb {R}}}^2}{\check{\theta }}(2^{\ell '}z)\int _0^1\Delta _\ell \nabla X(x-\tau z)\cdot z\,d\tau S_\ell \partial _kg(x-z)\,dz, \end{aligned}$$

where \(\theta (\xi ) \xi _i\xi _j|\xi |^{-2}\phi (\xi ).\) Then we deduce from (A.3) that

$$\begin{aligned} |[T_{X^k}; R_iR_j]\partial _kg|\le \sum _{|\ell -\ell '|\le 4}2^{\ell '}\int _{{{\mathbb {R}}}^2}\Psi (2^{\ell '}z)\int _0^1|\Delta _\ell \nabla X(x-\tau z)|\,d\tau 2^\ell \mathrm{M}g(x-z)\,dz, \end{aligned}$$

for \(\Psi (z) |z||{\check{\theta }}(z)|.\) Now since \(r\in ]1,\infty [\) and \(\frac{1}{p}+\frac{1}{q}=\frac{1}{r}<1,\) we can choose \(\alpha ,\beta \in ]0.1[\) satisfying

$$\begin{aligned} \alpha +\beta =1,\quad \alpha>\frac{1}{2},\quad p\alpha>1\quad \hbox {and}\quad q\beta >1. \end{aligned}$$
(A.4)

We get, by applying Hölder’s inequality, that

$$\begin{aligned} \begin{aligned} |[T_{X^k}; R_iR_j]\partial _kg(x)|&\le \sum _{|\ell -\ell '|\le 4} \left( \int _0^12^{2\ell '}\int _{{{\mathbb {R}}}^2}\Psi (2^{\ell '} z)|\Delta _\ell \nabla X(x-\tau z)|^{\frac{1}{\alpha }}\,dz\,d\tau \right) ^\alpha \\&\quad \times \left( 2^{2\ell '}\int _{{{\mathbb {R}}}^2}\Psi (2^{\ell '} z)\left[ \mathrm{M}g(x-z)\right] ^{\frac{1}{\beta }}\,dz\right) ^\beta \\&\le \sum _{\ell \in {{{\mathbb {Z}}}}}\left[ \mathrm{M}(|\Delta _\ell \nabla X|^{\frac{1}{\alpha }})\right] ^\alpha \left[ \mathrm{M}((\mathrm{M}g)^{\frac{1}{\beta }})\right] ^\beta , \end{aligned} \end{aligned}$$

from which, (A.4) and Lemma A.1, we deduce that

$$\begin{aligned} \begin{aligned} \Vert [T_{X^k}; R_iR_j]\partial _kg\Vert _{L^r}&\le \Bigl \Vert \Bigl \{\sum _{\ell \in {{{\mathbb {Z}}}}}\bigl [\mathrm{M}(|\Delta _\ell \nabla X|^{\frac{1}{\alpha }})\bigr ]^{2\alpha }\Bigr \}^{\frac{1}{2\alpha }}\Bigr \Vert _{L^{p\alpha }}^\alpha \bigl \Vert \mathrm{M}(\mathrm{M}g)^{\frac{1}{\beta }})\bigr \Vert _{L^{q\beta }}^\beta \\&\le C\Bigl \Vert \Bigl \{\sum _{\ell \in {{{\mathbb {Z}}}}}\bigl [ 2^{\ell }\Delta _{\ell }X^k\bigr ]^2\Bigr \}^{\frac{1}{2}}\Bigr \Vert _{L^p}\bigl \Vert \mathrm{M}g^{\frac{1}{\beta }}\bigr \Vert _{L^{q\beta }}^\beta \\&\le C\Vert \nabla X\Vert _{L^p}\Vert g\Vert _{L^q}. \end{aligned} \end{aligned}$$

By summing up the above estimate, we conclude the proof of (A.1). \(\quad \square \)

Appendix B. Lipschitz Estimate of Elliptic Equation of Divergence Form

The goal of this appendix is to generalize Proposition 2.4 to elliptic equation of divergence form with bounded coefficients which may have a small gap across a surface. The main result reads

Proposition B.1

Let \(p\in ]2,\infty [,\)\(X=\bigl (X_\lambda \bigr )_{\lambda \in \Lambda }\) be a non-degenerate family of vector fields in the sense of Definition 1.1 with \(X_\lambda \in C^1_b({{\mathbb {R}}}^2)\) and \(\nabla X_\lambda \in L^p({{\mathbb {R}}}^2)\) for each \(\lambda \in \Lambda .\) Let \(a_{ij}\in L^\infty ({{\mathbb {R}}}^2)\) with \(\sup _{\lambda \in \Lambda }\bigl \Vert \partial _{X_\lambda } a_{i,j}\bigr \Vert _{L^\infty }\le C\) and \(\Vert (a_{ij})_{2\times 2}-Id\Vert _{L^\infty }\le \varepsilon _0\) for some \(\varepsilon _0\) sufficiently small. We assume moreover that \(f\in L^p\cap L^{\frac{2p}{2+p}}({{\mathbb {R}}}^2)\) and \(\partial _{X_\lambda }f\in L^{\frac{2p}{2+p}}({{\mathbb {R}}}^2)\) for \(\lambda \in \Lambda .\) Then the following equation

$$\begin{aligned} \sum _{i,j=1}^2\partial _i(a_{ij}\partial _j u)=f \quad \text{ for }\quad x\in {{\mathbb {R}}}^2, \end{aligned}$$
(B.1)

has a unique solution \(u\in \dot{W}^{1,p}({{\mathbb {R}}}^2)\cap \dot{W}^{1,\infty }({{\mathbb {R}}}^2) \) so that for any \(s\in ]2/p,1[,\)

$$\begin{aligned} \begin{aligned} \Vert \nabla u\Vert _{L^\infty }&\le C_s\Bigl (\varepsilon _0\Bigl [1+C(s,p,X)\sup _{\lambda \in \Lambda }\Vert X_\lambda \Vert _{L^\infty }\bigl (\Vert \nabla X_\lambda \Vert _{L^p}^{\frac{2}{p-2}}+\Vert \nabla X_\lambda \Vert _{L^p}^{\frac{2}{ps-2}}\bigr ) \Bigr ]\Vert f\Vert _{L^\frac{2p}{2+p}}\\&\quad +\Vert f\Vert _{ L^{\frac{2p}{2+p}}}^{1-\frac{2}{p}}\Vert f\Vert _{L^p}^{\frac{2}{p}}\Bigr )+\frac{C}{I(X)}\sup _{\lambda \in \Lambda }\Bigl (\varepsilon _0\Vert X_\lambda \Vert _{L^\infty }\Vert f\Vert _{L^\frac{2p}{2+p}}\Bigr )^{1-\frac{2}{p}}\\&\quad \times \Bigl (\bigl [1+\varepsilon _0\Vert \nabla X_\lambda \Vert _{L^\infty }\bigr ]\Vert f\Vert _{L^\frac{2p}{2+p}}+\varepsilon _0\bigl \Vert \partial _{X_\lambda }f\bigr \Vert _{ L^{\frac{2p}{2+p}}}\Bigr )^{\frac{2}{p}}, \end{aligned} \end{aligned}$$
(B.2)

for C(spX) given by (2.20).

Proof

The proof of this proposition consists in the estimate of the striated regularity of the solution (B.1) and then applying Proposition 2.4. Let us denote

$$\begin{aligned} \mathfrak {G} \left( (a_{ij})_{2\times 2}-\mathrm{Id}\right) \nabla u, \end{aligned}$$

For simplicity, we just present the a priori estimate for smooth enough solutions of (B.1). We first write

$$\begin{aligned} \nabla u=\sum _{i,j=1}^2\nabla (-\Delta )^{-1}\partial _i((a_{ij}-\delta _{ij})\partial _j u)+\nabla \Delta ^{-1}f, \end{aligned}$$
(B.3)

from which, we infer

$$\begin{aligned} \begin{aligned} \Vert \nabla u\Vert _{L^p}&\le C\bigl (\bigl \Vert \mathfrak {G}\Vert _{L^p}+\Vert f\Vert _{L^\frac{2p}{2+p}}\bigr ) \le C\bigl (\varepsilon _0\Vert \nabla u\Vert _{L^p}+\Vert f\Vert _{L^\frac{2p}{2+p}}\bigr ). \end{aligned} \end{aligned}$$

So that by taking \(\varepsilon _0\) sufficiently small, we obtain

$$\begin{aligned} \Vert \nabla u\Vert _{L^p}\le C\Vert f\Vert _{L^{\frac{2p}{2+p}}}. \end{aligned}$$
(B.4)

Whereas for any \(C^1\) vector field X,  we get, by applying \(\partial _X\) to (B.1), that

$$\begin{aligned} \sum _{i,j=1}^2\partial _i(a_{ij}\partial _j \partial _X u)=\partial _X f-\sum _{i,j=1}^2\partial _i(\partial _Xa_{ij}\partial _j u)-\sum _{i,j=1}^2\partial _i(a_{ij}\partial _j X\partial _j u). \end{aligned}$$

Then along the same line to proof of (B.4), we deduce

$$\begin{aligned} \begin{aligned} \Vert \nabla \partial _X u\Vert _{L^p}&\le C\Bigl (\Vert \partial _Xf\Vert _{L^{\frac{2p}{2+p}}}+\bigl (\Vert \partial _Xa_{ij}\Vert _{L^\infty }+\Vert \nabla X\Vert _{L^\infty }\bigr )\Vert \nabla u\Vert _{L^p}\Bigr )\\&\le C\Bigl (\Vert \partial _Xf\Vert _{L^{\frac{2p}{2+p}}}+\bigl (\Vert \partial _Xa_{ij}\Vert _{L^\infty }+\Vert \nabla X\Vert _{L^\infty }\bigr )\Vert f\Vert _{L^{\frac{2p}{2+p}}}\Bigr ). \end{aligned} \end{aligned}$$
(B.5)

On the other hand, for any \(s\in ]2/p,1[,\) we deduce from Proposition 2.4 and (B.3) that

$$\begin{aligned} \begin{aligned}&\Vert \nabla u\Vert _{L^\infty }\le C\bigl (\bigl \Vert \mathfrak {G}\bigr \Vert _{L^p}+\Vert \mathfrak {G}\Vert _{L^\infty }\bigr )+\Vert \nabla \Delta ^{-1}f\Vert _{L^\infty }+\frac{C_s}{I(X)}\sup _{\lambda \in \Lambda }\Bigl \{\bigl (\Vert X_\lambda \Vert _{L^\infty }\Vert \mathfrak {G}\Vert _{L^p}\bigr )^{1-\frac{2}{p}}\\&\quad \times \bigl (\Vert \nabla X_\lambda \Vert _{L^p}\Vert \mathfrak {G}\Vert _{L^\infty }+\Vert \partial _{X_\lambda }\mathfrak {G}\Vert _{L^p}\bigr )^{\frac{2}{p}}+\bigl (\Vert X_\lambda \Vert _{L^\infty }\Vert \mathfrak {G}\Vert _{L^p}\bigr )^{1-\frac{2}{ps}}\bigl (\Vert \nabla X_\lambda \Vert _{L^p}\Vert \mathfrak {G}\Vert _{L^\infty }\bigr )^{\frac{2}{ps}}\Bigr \}. \end{aligned} \end{aligned}$$

Due to \(p\in ]2,\infty [,\) we have

Applying Young’s inequality yields

As a result, it comes out

By taking \(\varepsilon _0\) sufficiently small and inserting the Estimates (B.4) and (B.5) to the above inequality, we achieve (B.2). \(\quad \square \)

Remark B.1

By repeating the proof of Proposition B.1, we can prove the same Lipschitz estimate (B.2) for the solutions of the following Stokes type system:

$$\begin{aligned} \sum _{i,j=1}^2\partial _i\left( a_{ij}\partial _j u\right) =f-\nabla p\quad \hbox {and}\quad {\mathrm{div}}u=0 \quad \text{ for }\quad x\in {{\mathbb {R}}}^2. \end{aligned}$$

We can even work for the above problems in the multi-dimensional case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paicu, M., Zhang, P. Striated Regularity of 2-D Inhomogeneous Incompressible Navier–Stokes System with Variable Viscosity. Commun. Math. Phys. 376, 385–439 (2020). https://doi.org/10.1007/s00220-019-03446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03446-z

Navigation