Skip to main content
Log in

Attractor Properties for Irreversible and Reversible Interacting Particle Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider translation-invariant interacting particle systems on the lattice with finite local state space admitting at least one Gibbs measure as a time-stationary measure. The dynamics can be irreversible but should satisfy some mild non-degeneracy conditions. We prove that weak limit points of any trajectory of translation-invariant measures, satisfying a non-nullness condition, are Gibbs states for the same specification as the time-stationary measure. This is done under the additional assumption that zero entropy loss of the limiting measure w.r.t. the time-stationary measure implies that they are Gibbs measures for the same specification. We show how to prove the non-nullness for a large number of cases, and also give an alternate version of the last condition such that the non-nullness requirement can be dropped. As an application we obtain the attractor property if there is a reversible Gibbs measure. Our method generalizes convergence results using relative entropy techniques to a large class of dynamics including irreversible and non-ergodic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. In: Fundamental Principles of Mathematical Sciences, vol. 348. Springer (2014)

  2. Dai Pra, P.: Large deviations and stationary measures for interacting particle systems. Stochast. Process. Appl. 48(1) (1993)

  3. Dereudre D.: Variational principle for Gibbs point processes with finite range interaction. Electron. Commun. Probab. 21(10), 11 (2016)

    MathSciNet  MATH  Google Scholar 

  4. van Enter A.C.D., Fernández R., Sokal A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. van Enter A.C.D., Fernández R., den Hollander F., Redig F.: Possible Loss and recovery of Gibbsianness during the stochastic evolution of Gibbs Measures. Comm. Math. Phys. 226, 101–130 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. van Enter A.C.D., Fernández R., den Hollander F., Redig F.: A large-deviation view on dynamical Gibbs-non-Gibbs transitions. Moscow Math. J. 10, 687–711 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. van Enter A.C.D., Ruszel W.M.: Gibbsianness vs Non-Gibbsianness of time-evolved planar rotor models.. Stoch. Proc. Appl. 119, 1866–1888 (2009)

    Article  MATH  Google Scholar 

  8. Erbar M., Kuwada K., Sturm K.T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(58), 993–1071 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ermolaev V.N., Külske C.: Low-temperature dynamics of the Curie-Weiss model: Periodic orbits, multiple histories and loss of Gibbsianness. J. Stat. Phys. 141, 727–756 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Funaki T., Spohn H.: Motion by mean curvature from the Ginzburg-Landau interface model. Commun. Math. Phys. 185, 1–36 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Georgii, H.-O.: Canonical Gibbs measures, Springer Berlin, Lecture Notes in Mathematics 760 (1979)

  12. Georgii H.-O. (2011) Gibbs measures and phase transitions, New York: De Gruyter

  13. Giacomin G., Pakdaman K., Pellegrin X.: Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25, 1247–1273 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Guionnet, A., Zegarlinśki, B.: Lectures on logarithmic Sobolev inequalities, in Séminaire de Probabilités, XXXVI. Lecture Notes in Math., vol. 1801, Springer, Berlin (2003)

  15. Häggström O.: Is the fuzzy Potts model Gibbsian?. Ann. Inst. H. Poincaré Probab. Statist. 39(5), 891–917 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Higuchi Y., Shiga T.: Some results on Markov processes of infinite lattice spin systems. J. Math. Kyoto Univ. 15(1), 211–229 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holley R.: Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys. 23, 87–99 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Holley R., Stroock D.: In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state. Commun. Math. Phys. 55, 37–45 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jahnel B., Külske C.: Attractor properties of non-reversible dynamics w.r.t. invariant Gibbs measures on the lattice. Markov Process. Related Fields 22(3), 507–535 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Jahnel B., Külske C.: A class of non-ergodic interacting particle systems with unique invariant measure. Ann. Appl. Probab. 24, 2595–2643 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jahnel, B., Külske, C.: Synchronization for discrete mean-field rotators, Electron. J. Probab. 19(14) (2014)

  22. Jahnel B., Külske C.: A class of non-ergodic probabilistic cellular automata with unique invariant measure and quasi-periodic orbit. Stoch. Proc. Appl. 125, 2427–2450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jahnel B., Külske C.: The Widom–Rowlinson model under spin flip: Immediate loss and sharp recovery of quasilocality. Ann. Appl. Probab. 27, 3845–3892 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jahnel, B., Külske, C.: Gibbsian representation for point processes via hyperedge potentials. arXiv:1707.05991

  25. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems, Graduate Studies in Mathematics, vol. 320, Springer-Verlag Berlin (1999)

  26. Kozlov O.K.: Gibbs description of a system of random variables. Prob. Info. Trans. 10, 258–265 (1974)

    MathSciNet  Google Scholar 

  27. Külske C., Le Ny A.: Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry. Commun. Math. Phys. 271, 431–454 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Külske C., Le Ny A., Redig F.: Relative entropy and variational properties of generalized Gibbsian measures. Ann. Probab. 32, 1691–1726 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Külske C., Redig F.: Loss without recovery of Gibbsianness during diffusion of continuous spins. Prob. Theor. Rel. Fields 135, 428–456 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Künsch H.: Non reversible stationary measures for infinite interacting particle systems. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 66(3), 407 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liggett T. Interacting Particle Systems, New York: Springer-Verlag (1985)

  32. Maes, C.: Elements of nonequilibrium statistical mechanics, Amsterdam: Elsevier, 607–655 (2006)

  33. Maes C., Redig F., Verschuere M.: Entropy production for interacting particle systems. Amsterdam: Elsevier, Markov Process. Related Fields 7(1), 119–134 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Maes C., Shlosman S.B.: Rotating states in driven clock- and XY-models. J. Stat. Phys. 144, 1238–1246 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Olla S., Varadhan S.R.S.: Scaling limit for interacting Ornstein-Uhlenbeck processes. Commun. Math. Phys. 135, 355–378 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Olla S., Varadhan S.R.S., Yau H.T.: Hydrodynamic limit for a Hamiltonian system with weak noise. Commun. Math. Phys. 155, 523–560 (1991)

    Article  ADS  MATH  Google Scholar 

  37. Pfister C.-E.: Thermodynamical aspects of classical lattice systems, in and out of equilibrium. Progr. Prob. 51, 393–472 (2002)

    MATH  Google Scholar 

  38. von Renesse M.K., Sturm K.T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58, 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Spohn H.: Interfacemotion in models with stochastic dynamics. J. Stat. Phys. 71, 1081–1132 (1993)

    Article  ADS  MATH  Google Scholar 

  40. Sullivan W.G.: Potentials for almost Markovian random fields, Comm. Math. Phys. 33, 61–74 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Villani, C.: Optimal Transportation, Old and New. Graduate Studies in Mathematics, vol. 338, Springer-Verlag Berlin (2009)

  42. Yau H.T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22, 63–80 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and anonymous referees for comments and suggestions that helped to improve the presentation of the material. This research was supported by the Leibniz program Probabilistic Methods for Mobile Ad-Hoc Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Külske.

Additional information

Communicated by H. Spohn

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahnel, B., Külske, C. Attractor Properties for Irreversible and Reversible Interacting Particle Systems. Commun. Math. Phys. 366, 139–172 (2019). https://doi.org/10.1007/s00220-019-03352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03352-4

Navigation