Skip to main content
Log in

Categorical Relations Between Langlands Dual Quantum Affine Algebras: Exceptional Cases

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 05 October 2019

This article has been updated

Abstract

We first compute the denominator formulas for quantum affine algebras of all exceptional types. Then we prove the isomorphisms among Grothendieck rings of categories \({C_Q^{(t)} (t=1,2,3), \mathscr{C}_{\mathscr{Q}}^{(1)}}\) and \({\mathscr{C}_{\mathfrak{Q}}^{(1)}}\). These results give Dorey’s rule for all exceptional affine types, prove the conjectures of Kashiwara–Kang–Kim and Kashiwara–Oh, and provides the partial answers of Frenkel–Hernandez on Langlands duality for finite dimensional representations of quantum affine algebras of exceptional types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 05 October 2019

    In this addendum, we remove the ambiguity for roots of higher order of denominator formulas in our paper. These refinements state that there are roots of order 4, 5, 6, which is the first such observation of a root of order strictly larger than 3 to the best knowledge of the authors.

References

  1. Akasaka T., Kashiwara M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 33(5), 839–867 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bédard R.: On commutation classes of reduced words in Weyl groups. Eur. J. Combin. 20(6), 483–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benkart, G., Frenkel, I., Kang, S.-J., Lee, H.: Level 1 perfect crystals and path realizations of basic representations at q = 0. Int. Math. Res. Not. Art. ID 10312, 28 (2006)

  4. Bernard D., LeClair A.: Quantum group symmetries and nonlocal currents in 2 D QFT. Commun. Math. Phys. 142(1), 99–138 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brundan J., Kleshchev A., McNamara P.J.: Homological properties of finite-type Khovanov–Lauda–Rouquier algebras. Duke Math. J. 163(7), 1353–1404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chari, V.: On the fermionic formula and the Kirillov–Reshetikhin conjecture. Int. Math. Res. Not. 12, 629–654 (2001)

  7. Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 7, 357–382 (2002)

  8. Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of Groups (Banff, AB, 1994), volume 16 of CMS Conference Proceedings, pp. 59–78. American Mathematical Society, Providence (1995)

  9. Chari V., Pressley A.: Yangians, integrable quantum systems and Dorey’s rule. Commun. Math. Phys. 181(2), 265–302 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Date E., Okado M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \({A^{(1)}_n}\). Int. J. Mod. Phys. A 9(3), 399–417 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dorey P.: Root systems and purely elastic S-matrices. Nucl. Phys. B 358(3), 654–676 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. Etingof, P.I., Frenkel, I.B., Kirillov, Jr. A.A.: Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, volume 58 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998)

  13. Frenkel E., Hernandez D.: Langlands duality for finite-dimensional representations of quantum affine algebras. Lett. Math. Phys. 96(1-3), 217–261 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Frenkel E., Hernandez D.: Langlands duality for representations of quantum groups. Math. Ann. 349(3), 705–746 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frenkel E., Hernandez D. et al.: Baxters relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frenkel E., Reshetikhin N.: Deformations of W-algebras associated to simple Lie algebras. Commun. Math. Phys. 197(1), 1–32 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of \({\mathscr{W}}\)-algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), volume 248 of Contemporary Mathematics, pp. 163–205. American Mathematical Society, Providence (1999)

  18. Fujita, R.: Geometric realization of Dynkin quiver type quantum affine Schur–Weyl duality. Preprint, arXiv:1803.01538 (2018)

  19. Ginzburg, V., Reshetikhin, N., Vasserot, É.: Quantum groups and flag varieties. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), volume 175 of Contemporary Mathematics, pp. 101–130. American Mathematical Society, Providence (1994)

  20. Hernandez D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Hernandez, D.: Kirillov–Reshetikhin conjecture: the general case. Int. Math. Res. Not. 1, 149–193 (2010)

  22. Hernandez D., Leclerc B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154(2), 265–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hernandez D., Leclerc B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Hernandez D., Leclerc B.: A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules. J. Eur. Math. Soc. (JEMS) 18(5), 1113–1159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hernandez D., Nakajima H.: Level 0 monomial crystals. Nagoya Math. J. 184, 85–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Inoue R., Kuniba A., Takagi T.: Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry. J. Phys. A 45(7), 073001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kac V.G: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  28. Kang S.-J., Kashiwara M., Kim M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II. Duke Math. J. 164(8), 1549–1602 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang S.-J., Kashiwara M., Kim M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kang S.-J., Kashiwara M., Kim M., Oh S.: Simplicity of heads and socles of tensor products. Compos. Math. 151(2), 377–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kang S.-J., Kashiwara M., Kim M., Oh S.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III. Proc. Lond. Math. Soc. (3) 111(2), 420–444 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kang S.-J., Kashiwara M., Kim M., Oh S.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV. Sel. Math. (N.S.) 22(4), 1987–2015 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kang S.-J., Misra K.C.: Crystal bases and tensor product decompositions of \({U_q(G_2)}\)-modules. J. Algebra 163(3), 675–691 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kashiwara M., Misra K.C., Okado v., Yamada D.: Perfect crystals for \({U_q(D^{(3)}_4)}\). J. Algebra 317(1), 392–423 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kashiwara M.: Crystalizing the q-analogue of universal enveloping algebras. Commun. Math. Phys. 133(2), 249–260 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kashiwara M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kashiwara M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kashiwara, M., Kim, M., Oh, S.: Monoidal categories of modules over quantum affine algebras of type A and B. Proc. Lond. Math. Soc. (2017)

  39. Kashiwara, M., Oh, S.: Categorical relations between Langlands dual quantum affine algebras: doubly laced types. J. Algebr. Comb. (2018)

  40. Kato S.: Poincaré–Birkhoff–Witt bases and Khovanov–Lauda–Rouquier algebras. Duke Math. J. 163(3), 619–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Khovanov M., Lauda A.D: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Khovanov M., Lauda A.D: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363(5), 2685–2700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kleber, M.S.: Finite dimensional representations of quantum affine algebras. ProQuest LLC, Ann Arbor, MI, Ph.D. thesis, University of California, Berkeley (1998)

  44. Kleshchev A., Ram A.: Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words. Math. Ann. 349(4), 943–975 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kuniba A., Nakanishi T., Suzuki T.: T-systems and Y-systems in integrable systems. J. Phys. A 44(10), 103001 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Lusztig G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. McNamara P.J.: Finite dimensional representations of Khovanov–Lauda–Rouquier algebras I: finite type. J. Reine Angew. Math. 707, 103–124 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Misra K.C., Okado M., Wilson E.A.: Soliton cellular automaton associated with \({G^{(1)}_2}\) crystal base. J. Math. Phys. 53(1), 013510 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Naito, S., Sagaki, D.: Path model for a level-zero extremal weight module over a quantum affine algebra. Int. Math. Res. Not. 32, 1731–1754 (2003)

  50. Naito, S., Sagaki, D.: Crystal of Lakshmibai–Seshadri paths associated to an integral weight of level zero for an affine Lie algebra. Int. Math. Res. Not. 14, 815–840 (2005)

  51. Naito S., Sagaki D.: Construction of perfect crystals conjecturally corresponding to Kirillov–Reshetikhin modules over twisted quantum affine algebras. Commun. Math. Phys. 263(3), 749–787 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Naito S., Sagaki D.: Path model for a level-zero extremal weight module over a quantum affine algebra. I. Adv. Math. 200(1), 102–124 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nakajima H.: Quiver varieties and t-analogs of q-characters of quantum affine algebras. Ann. Math. (2) 160(3), 1057–1097 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Oh S.: The denominators of normalized R-matrices of types \({A_{2n-1}^{(2)}, A_{2n}^{(2)}, B_n^{(1)}}\) and \({D_{n+1}^{(2)}}\). Publ. Res. Inst. Math. Sci. 51(4), 709–744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Oh S.: Auslander–Reiten quiver of type D and generalized quantum affine Schur–Weyl duality. J. Algebra 460, 203–252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Oh S.: Auslander–Reiten quiver of type A and generalized quantum affine Schur–Weyl duality. Trans. Am. Math. Soc. 369(3), 1895–1933 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Oh, S.: Auslander–Reiten quiver and representation theories related to KLR-type Schur–Weyl duality. Math. Z. (2018)

  58. Oh, S., Suh, U.R.: Combinatorial Auslander–Reiten quivers and reduced expressions. Preprint, arXiv:1509.04820 (2015)

  59. Oh, S., Suh, U.R.: Twisted coxeter elements and folded AR-quivers via Dynkin diagram automorphisms: I. Preprint, arXiv:1606.00076 (2016)

  60. Oh, S., Suh, U.R.: Twisted Coxeter elements and folded AR-quivers via Dynkin diagram automorphisms: II. Preprint, arXiv:1606.00102 (2016)

  61. Okado M., Schilling A., Shimozono M.: Virtual crystals and Kleber’s algorithm. Commun. Math. Phys. 238(1–2), 187–209 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Rouquier, R.: 2-Kac–Moody algebras. arXiv:0812.5023 (2008)

  63. Rouquier R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 359–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Stembridge J.R.: Minuscule elements of Weyl groups. J. Algebra 235(2), 722–743 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. The Sage Developers: Sage Mathematics Software (version 8.1). The Sage Development Team. http://www.sagemath.org (2017)

  66. The Sage-Combinat Community: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics. http://combinat.sagemath.org (2008)

  67. Varagnolo M., Vasserot E.: Standard modules of quantum affine algebras. Duke Math. J. 111(3), 509–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  68. Varagnolo M., Vasserot E.: Canonical bases and KLR-algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  MATH  Google Scholar 

  69. Yamane S.: Perfect crystals of \({U_q(G^{(1)}_2)}\). J. Algebra 210(2), 440–486 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  70. Young C.A.S., Zegers R.: Dorey’s rule and the q-characters of simply-laced quantum affine algebras. Commun. Math. Phys. 302(3), 789–813 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Masaki Kashiwara for useful discussions. The authors would like to thank the anonymous referee for useful comments. T.S. would like to thank Ewha Womans University for its hospitality during his stay in June, 2017, where this work began. S.O. would like to thank The University of Queensland for its hospitality during his stay in February, 2018. This work benefited from computations using SageMath [65,66].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Scrimshaw.

Additional information

Communicated by P. Zinn-Justin

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Se-jin Oh was partially supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (NRF-2016R1C1B2013135). Travis Scrimshaw was partially supported by the Australian Research Council DP170102648.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Sj., Scrimshaw, T. Categorical Relations Between Langlands Dual Quantum Affine Algebras: Exceptional Cases. Commun. Math. Phys. 368, 295–367 (2019). https://doi.org/10.1007/s00220-019-03287-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03287-w

Navigation