Skip to main content
Log in

Local Conformal Structure of Liouville Quantum Gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In 1983 Belavin, Polyakov, and Zamolodchikov (BPZ) formulated the concept of local conformal symmetry in two dimensional quantum field theories. Their ideas had a tremendous impact in physics and mathematics but a rigorous mathematical formulation of their approach has proved elusive. In this work we provide a probabilistic setup to the BPZ approach for the Liouville Conformal Field Theory (LCFT). LCFT has deep connections in physics (string theory, two dimensional gravity) and in mathematics (scaling limits of planar maps, quantum cohomology). We prove the validity of the conformal Ward identities that represent the local conformal symmetry of LCFT and the Belavin–Polyakov–Zamolodchikov differential equations that form the basis for deriving exact formuli for LCFT. We prove several celebrated results on LCFT, in particular an explicit formula for the degenerate 4 point correlation functions leading to a proof of a non trivial functional relation on the 3 point structure constants derived earlier using physical arguments by Teschner. The proofs are based on exact identities for LCFT correlation functions which rely on the underlying Gaussian structure of LCFT combined with estimates from the theory of critical Gaussian Multiplicative Chaos and a careful analysis of singular integrals (Beurling transforms and generalizations). As a by-product, we give bounds on the correlation functions of LCFT when two points collide making rigorous certain predictions from physics on the so-called “operator product expansion” of LCFT. This paper provides themathematical basis for the proof of integrability results for LCFT (the DOZZ conjecture) and the construction of the Virasoro representation theory for LCFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alday F.L., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. Astala K., Iwaniec T., Saksman E.: Beltrami operators in the plane. Duke Math. J. 107(1), 27–56 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bauer M., Bernard D., Kytola K.: Multiple Schramm–Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5-6), 1125–1163 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Belavin A.A., Polyakov M.A., Zamolodchikov B.A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. arXiv:1506.09113

  6. Borodin A., Salminen P.: Handbook of Brownian Motion-Facts and Formulae. Probability and Its Applications, Birkhäuser (1996)

    Book  Google Scholar 

  7. Boutillier C., De Tilière B.: The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147, 379–413 (2010)

    Article  MathSciNet  Google Scholar 

  8. Boutillier C., De Tilière B.: The critical Z-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301, 473–516 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Camia, F., Gandolfi, A., Kleban, M.: Conformal Correlation Functions in the Brownian Loop Soup. arXiv:1501.05945

  10. Camia F., Garban C., Newman C.: Planar Ising magnetization field I. Uniqueness of the critical scaling limit. Ann. Probab. 43(2), 528–571 (2015)

    Article  Google Scholar 

  11. Chelkak, D., Glazman, A., Smirnov, S.: Discrete stress–energy tensor in the loop O(n) model. arXiv:1604.06339

  12. Smirnov S Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chelkak D., Hongler C., Izyurov K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181, 1087–1138 (2015)

    Article  MathSciNet  Google Scholar 

  14. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville Quantum Gravity on the Riemann Sphere. arXiv:1410.7318

  15. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Renormalizability of Liouville Quantum Gravity at the Seiberg Bound. arXiv:1506.01968

  16. Dorn H., Otto H.-J.: Two and three point functions in Liouville theory. Nucl. Phys. B. 429(2), 375–388 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  17. Doyon B.: Conformal loop ensembles and the stress–energy tensor. Lett. Math. Phys. 103, 233–284 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dubédat J.: SLE and the free field: partition functions and couplings. J. AMS 22(4), 995–1054 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Dubédat J.: Commutation relations for SLE. Commun. Pure Appl. Math. 60, 1792–1847 (2007)

    Article  MathSciNet  Google Scholar 

  20. Dubédat, J.: Exact Bosonization of the Ising Model. arXiv:1112.4399

  21. Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as mating of trees. arXiv:1409.7055

  22. Forrester P.J., Warnaar S.O.: The importance of Selberg integral. Bull. AMS 45(4), 489–534 (2008)

    Article  MathSciNet  Google Scholar 

  23. Friedrich R., Werner W.: Conformal restriction, highest-weight representations and SLE. Commun. Math. Phys. 243, 105–122 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. Fyodorov Y., Bouchaud J.-P.: Freezing and extreme value statistics in a random energy Model with logarithmically correlated potential. J. Phys. A Math. Theor. 41, 372001 (2008)

    Article  MathSciNet  Google Scholar 

  25. Gawedzki, K.: Lectures on conformal field theory. Quantum field theory program at IAS.

  26. Harlow D., Maltz J., Witten E.: Analytic continuation of Liouville theory. J. High Energy Phys. 2011, 71 (2011)

    Article  MathSciNet  Google Scholar 

  27. Hongler C., Smirnov S.: The energy density in the planar Ising model. Acta Math. 211(2), 191–225 (2013)

    Article  MathSciNet  Google Scholar 

  28. Kang N.-G., Makarov N.: Gaussian Free Field and Conformal Field Theory. Astérisque, SMF (2013)

    MATH  Google Scholar 

  29. Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett. A. 3(8), 819–826 (1988)

    Article  ADS  Google Scholar 

  30. Kostov I.K., Petkova V.B.: Bulk correlation functions in 2D quantum gravity. Theor. Math. Phys. 146(1), 108–118 (2006)

    Article  Google Scholar 

  31. Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville Theory: Proof of the DOZZ Formula. arXiv:1707.08785

  32. Nakayama Y.: Liouville field theory: a decade after the revolution. Int. J. Mod. Phys. A 19, 2771–2930 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology. arXiv:1211.1287

  34. O’Raifeartaigh L., Pawlowski J.M., Sreedhar V.V.: The two-exponential li ouville theory and the uniqueness of the three-point function. Phys. Lett. B . 481(2-4), 436–444 (2000)

    Article  ADS  Google Scholar 

  35. Osterwalder K., Schrader R.: Axioms for Euclidean Green’’s functions I. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  36. Polyakov A.M.: Quantum geometry of bosonic strings. Phys. Lett. 103, 207 (1981)

    Article  MathSciNet  Google Scholar 

  37. Rémy, G.: The Fyodorov–Bouchaud conjecture and Liouville Conformal Field theory (in preparation)

  38. Ribault, S.: Conformal Field Theory on the Plane. arXiv:1406.4290

  39. Ribault S., Santachiara R.: Liouville theory with a central charge less than one. J. High Energy Phys. 8, 109 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Rhodes, R., Vargas, V.: Lecture Notes on Gaussian Multiplicative Chaos and Liouville Quantum Gravity. arXiv:1602.07323

  41. Seiberg N.: Notes on quantum liouville theory and quantum gravity. Prog. Theor. Phys. Suppl. 102, 319 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  42. Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Rel. Fields 139, 521–541 (2007)

    Article  MathSciNet  Google Scholar 

  43. Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435–1467 (2010)

    Article  MathSciNet  Google Scholar 

  44. Takhtajan L., Teo L.-P.: Quantum Liouville theory in the background field formalism I Compact Riemann surfaces. Commun. Math. Phys. 268(1), 135–197 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. Takhtajan L., Zograf P.: Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on \({\mathcal{M}_{0,n}}\). Trans. Am. Math. Soc. 355(5), 1857–1867 (2002)

    Article  Google Scholar 

  46. Teschner J.: On the Liouville three point function. Phys. Lett. B 363, 65–70 (1995)

    Article  ADS  Google Scholar 

  47. Teschner J.: Liouville theory revisited. Class. Quant. Grav. 18, R153–R222 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  48. Zamolodchikov A.B.: Three-point function in the minimal Liouville gravity. Theor. Math. Phys. 142(2), 183–196 (2005)

    Article  Google Scholar 

  49. Zamolodchikov A.B., Zamolodchikov A.B.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B 477(2), 577–605 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Francois David and Sylvain Ribault for fruitful discussions on Liouville Field theory. The authors also wish to thank Colin Guillarmou for helping them handle the hypergeometric equation which arises in the study of the four point correlation function.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Kupiainen.

Additional information

Communicated by M. Salmhofer

Antti Kupiainen: Supported by the Academy of Finland and ERC Advanced Grant 741487, Rémi Rhodes and Vincent Vargas: Research supported in part by ANR Grant Liouville (ANR-15-CE40-0013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupiainen, A., Rhodes, R. & Vargas, V. Local Conformal Structure of Liouville Quantum Gravity. Commun. Math. Phys. 371, 1005–1069 (2019). https://doi.org/10.1007/s00220-018-3260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3260-3

Navigation