Skip to main content
Log in

The KPZ Limit of ASEP with Boundary

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It was recently proved in Corwin and Shen (CPAM, [CS16]) that under weakly asymmetric scaling, the height functions for ASEP with sources and sinks converges to the Hopf–Cole solution of the KPZ equation with inhomogeneous Neumann boundary conditions. In their assumptions [CS16] chose positive values for the Neumann boundary condition, and they assumed initial data which is close to stationarity. By developing more extensive heat-kernel estimates, we clarify and extend their results to negative values of the Neumann boundary parameters, and we also show how to generalize their results to empty initial data (which is very far from stationarity). Combining our result with Barraquand et al. (Duke Math J, [BBCW17]), we obtain the Laplace transform of the one-point distribution for half-line KPZ, and use this to confirm t1/3-scale GOE Tracy–Widom long-time fluctuations at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1 +  1 dimensions. Commun. Pure Appl. Math. 64, 466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. J. Stat. Phys. 154(1–2), (2014)

  3. Borodin, A., Bufetov, A., Corwin, I.: Directed random polymers via nested contour integrals (2016). arXiv preprint. arXiv:1511.07324

  4. Barraquand, G., Borodin, A., Corwin, I.: Half-space Macdonald processes (2018). arXiv preprint arXiv:1802.08210

  5. Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Pfaffian Schur proceses and last passage percolation in a half-quadrant (2016). arXiv preprint. arXiv:1606.00525

  6. Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open ASEP. Duke Math. J. (2018). arXiv:1704.04309v2

  7. Borodin A., Corwin I.: Macdonald processes. Prob. Theory Relat. Fields 158(1-2), 225–400 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodineau T., Derrida B.: Current large deviations for asymmetric exclusion processes with open boundaries. J. Stat. Phys. 123(2), 277–300 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Borodin A., Gorin V.: Moments match between the KPZ equation and the airy point process. SIGMA 12(102), 1–7 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Billingsley P.: Convergence of Probability Measures. Wiley, Hoboken (1997)

    MATH  Google Scholar 

  12. Borodin A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59(2), 023301 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Baik, J., Rains, E.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109(2), 205–281 (2001)

  14. Corwin, I., Ghosal, P.: Lower tail of the KPZ equation (2018). arXiv preprint arXiv:1802.03273

  15. Corwin I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(01), 1130001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Corwin, I., Shen, H.: Open ASEP in the weakly asymmetric regime. CPAM (2018)

  17. Corwin, I., Shen, H., Tsai, L.C.: ASEP (q, j) converges to the KPZ equation. Ann. Inst. H. Poincaré Prob. Stat. 54(2), 995–1012 (2018)

  18. Corwin I., Tsai L.C.: KPZ equation limit of higher-spin exclusion processes. Ann. Prob. 45(3), 1771–1798 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Derrida B., Domany E., Mukamel D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69(3-4), 667–687 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Derrida B., Enaud C.: Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114(3-4), 537–562 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Derrida B., Evans M.R., Hakim V., Pasquier V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26(7), 1493–1517 (1993)

    Article  ADS  MATH  Google Scholar 

  22. Derrida B., Enaud C., Lebowitz J.: The asymmetric exclusion process and Brownian excursions. J. Stat. Phys. 115(1-2), 365–382 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Derrida, B., Enaud, C., Landim, C., Olla, S.: Fluctuations in the weakly asymmetric exclusion process with open boundary conditions. J. Stat. Phys. 118(5–6), 795–811 (2005)

  24. Derrida, B.: Matrix Ansatz and large deviations of the density in exclusion processes. In: Proceedings of the ICM, Madrid, pp. 367–382 (2006)

  25. Dittrich P., Gärtner J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151(1), 75–93 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Diehl J., Gubinelli M., Perkowski N.: The KPZ equation as scaling limit of weakly interacting Brownian bridges. Commun. Math. Phys. 354(2), 549–589 (2016)

    Article  ADS  MATH  Google Scholar 

  27. De Masi A., Presutti A., Scacciatelli E.: The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Prob. Stat. 25(1), 1–38 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  29. Domany E., Schütz G.: Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72(1-2), 277–296 (1993)

    Article  ADS  MATH  Google Scholar 

  30. Dembo A., Tsai L.C.: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Eyink G., Lebowitz J., Spohn H.: Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models. Commun. Math. Phys. 132(1), 253–283 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Eyink G., Lebowitz J., Spohn H.: Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state. Commun. Math. Phys. 140(1), 119–131 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gärtner J.: Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Process. Appl. 27(2), 233–260 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Gerencsér, M., Hairer, M.: Singular SPDEs in domains with boundaries (2017). arXiv preprint arXiv:1702.06522

  35. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3 (e6), p. 75 (2015)

  36. Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gueudré T., Le Doussal P.: Directed polymer near a hard wall and KPZ equation in the half-space. Europhys. Lett. 100(2), 26006 (2012)

    Article  ADS  Google Scholar 

  38. Gonçalves, P., Landim, C., Milanés, A.: Nonequilibrium fluctuations of one-dimensional boundary driven weakly asymmetric exclusion processes. Ann. Appl. Prob. 27(1), 140–177 (2017)

  39. Gubinelli M., Perkowski N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Gubinelli M., Perkowski N.: Energy solutions of KPZ are unique. J. Am. Math. Soc. 31, 427–471 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gonçalves, P., Perkowski, N., Simon, M.: Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from WASEP (2017). arXiv preprint arXiv:1710.11011

  42. Grossinsky, S.: Phase transitions in nonequilibrium stochastic particle systems with local conservation laws. PhD Thesis. TU Munich (2004)

  43. Hairer, M.: An introduction to SPDEs (July 2009). arXiv eprint arXiv:0907.4178

  44. Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015). arXiv preprint arXiv:1512.07845

  45. Itô K., McKean H.: Brownian motions on a half-line. Ill. J. Math. 7(2), 181–231 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  46. Imamura T., Sasamoto T.: Fluctuations of the one-dimensional polynuclear growth model in half-space. J. Stat. Phys. 115(3-4), 749–803 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Kardar M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  48. Kipnis C., Olla S., Varadhan S.R.S.: Hydrodynamics and large deviation for simple exclusion processes. Commun. Pure Appl. Math. 42(2), 115–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kovarik H.: On the lowest eigenvalues of Laplace operators with mixed boundary conditions. J. Geom. Anal. 24(3), 1509–1525 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Konno N., Shiga T.: Stochastic partial differential equations for some measure-valued diffusions. Prob. Theory Relat. Fields 79(2), 201–225 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Labbé C.: Weakly asymmetric bridges and the KPZ equation. Commun. Math. Phys. 353(3), 1261–1298 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Liggett T.: Ergodic theorems for the asymmetric simple exclusion process. Trans. Am. Math. Soc. 213, 237–261 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mueller C.: On the support of solutions to the heat equation with noise. Stochastics 37(4), 225–246 (1991)

    MathSciNet  MATH  Google Scholar 

  54. Naqvi K., Mork K., Waldenstrom S.: Symmetric random walk on a regular lattice with an elastic barrier: diffusion equation and boundary condition. Chem. Phys. Lett. 92(2), 160–164 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  55. Papanicolaou G.: The probabilistic solution of the third boundary value problem for second order elliptic equations. Prob. Theory Relat. Fields 87, 27–77 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tracy C., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Tracy C., Widom H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Walsh J.: An introduction to stochastic partial differential equations. Lect. Notes Math. 1180, 265–439 (1986)

    Article  MathSciNet  Google Scholar 

  59. Wu, X.: Intermediate disorder regime for half-space directed polymers (2018). arXiv preprint arXiv:1804.09815

Download references

Acknowledgements

The authorwishes to thank Ivan Corwin for suggesting the problem, for providing helpful discussions about various issues which came up during the writing of the paper, for suggesting the free energy heuristic to obtain the limit and T 1/2-fluctuations in the low-density regime, and also for thoroughly reading the first four preliminary drafts of this paper. We also wish to thank Hao Shen and Li-Cheng Tsai, who provided some very useful discussions. The author was partially supported by the Fernholz Foundation’s “Summer Minerva Fellows” program, as well as summer support from Ivan Corwin’s NSF Grant DMS:1811143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalin Parekh.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parekh, S. The KPZ Limit of ASEP with Boundary. Commun. Math. Phys. 365, 569–649 (2019). https://doi.org/10.1007/s00220-018-3258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3258-x

Navigation