Skip to main content
Log in

The Set of Smooth Quasi-periodic Schrödinger Cocycles with Positive Lyapunov Exponent is Not Open

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

One knows that the set of quasi-periodic Schrödinger cocycles with positive Lyapunov exponent is open and dense in analytic topology. In this paper, we construct cocycles with positive Lyapunov exponent which can be arbitrarily approximated by ones with zero Lyapunov exponent in the space of \({\mathcal{C}^ l (1 \le l \le \infty)}\) smooth quasi-periodic cocycles, which shows that the set of quasi-periodic Schrödinger cocycles with positive Lyapunov exponent is not open in smooth topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila A.: Density of positive Lyapunov exponents for \({SL(2,\mathbb{R})}\) cocycles. J. Am. Math. Soc. 24, 999–1014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avila A.: Global theory of one-frequency Schrödinger operators. Acta Math. 215, 1–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avila A., Jitomirskaya S.: The ten Martini problem. Ann. Math. 170, 303–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avila A., Jitomirskaya S., Sadel C.: Complex one-frequency cocycles. J. Eur. Math. Soc. 16(9), 1915–1935 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avila A., Krikorian R.: Monotonic cocycles. Invent. Math. 202, 271–331 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Avila A., Viana M.: Extremal Lyapunov exponents: an invariance principle and applications. Inventiones Math. 181, 115–189 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Benedicks M., Carleson L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bjerklöv K.: Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent. Geom. Funct. Anal. 16(6), 1183–1200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bjerklöv, K.: The dynamics of a class of quasi-periodic Schrödinger cocycles. Ann. Henri Poincaré 16(4), 961–1031 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bocher-Neto, C., Viana, M.: Continuity of Lyapunov exponents for random 2D matrices. arXiv:1012.0872v1 (2010)

  11. Bochi J.: Genericity of zero Lyapunov exponents. Ergod. Theory Dyn. Syst. 22(6), 1667–1696 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bochi J., Fayad B.: Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for \({SL(2,\mathbb{R})}\) cocycles. Bull. Braz. Math. Soc. New Ser. 37(3), 307–349 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bochi J., Viana M.: The Lyapunov exponents of generic volume perserving and symplectic maps. Ann. Math. 161, 1–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonatti C., Gómez-Mont X., Viana M.: Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices. Ann. Inst. Henri Poincaré Anal. Non Linéaire 20, 579–624 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bourgain J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, 158. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

  16. Bourgain J.: Positivity and continuity of the Lyapunov exponent for shifts on \({\mathbb{T}^d}\) with arbitrary frequency vector and real analytic potential. J. Anal. Math. 96, 313–355 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bourgain J., Goldstein M.: On nonperturbative localization with quasi-periodic potential. Ann. Math. 152, 835–879 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourgain J., Goldstein M., Schlag W.: Anderson localization for Schrödinger operators on \({\mathbb{Z}}\) with potentials given by skew-shift. Commun. Math. Phys. 220(3), 583–621 (2001)

    Article  ADS  MATH  Google Scholar 

  19. Bourgain J., Jitomirskaya S.: Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys. 108(5–6), 1203–1218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourgain J., Schlag W.: Anderson localization for Schrödinger operators on \({\mathbb{Z}}\) with strongly mixing potentials. Commun. Math. Phys. 215, 143–175 (2000)

    Article  ADS  MATH  Google Scholar 

  21. Duarte P., Klein S.: Continuity of the Lyapunov exponents for quasiperiodic cocycles. Commun. Math. Phys. 332(3), 1113–1166 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Eliasson L.H.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179(2), 153–196 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fröhlich J., Spencer T., Wittwer P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132, 5–25 (1990)

    Article  ADS  MATH  Google Scholar 

  24. Furman A.: On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann. Inst. Henri Poincaré 33, 797–815 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Furstenberg H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  26. Furstenberg H., Kifer Y.: Random matrix products and measures in projective spaces. Isr. J. Math 10, 12–32 (1983)

    Article  MATH  Google Scholar 

  27. Goldstein M., Schlag W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. Math. 154, 155–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hennion H.: Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes. Z. Wahrsch. Verw. Gebiete 67, 265–278 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Herman M.: Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58, 453–502 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ishii K.: Localization of eigenstates and transport phenomena in one-dimensional disordered systems. Suppl. Prog. Theor. Phys. 53, 77–138 (1973)

    Article  ADS  Google Scholar 

  31. Jitomirskaya S., Koslover D., Schulteis M.: Continuity of the Lyapunov exponent for general analytic quasiperiodic cocycles. Ergod. Theory Dyn. Syst. 29, 1881–1905 (2009)

    Article  MATH  Google Scholar 

  32. Jitomirskaya S., Marx C.: Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles with singularities. Journal of Fixed Point Theory and Applications 10, 129–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jitomirskaya S., Marx C.: Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model. Comm. Math. Phys. 316(1), 237–267 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Jitomirskaya S., Marx C.: Analytic quasi-periodic Schrödinger operators and rational frequency approximants. Geom. Funct. Anal. 22(5), 1407–1443 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jitomirskaya S., Mavi R.: Continuity of the measure of the spectrum for quasiperiodic Schrödinger operators with rough potentials. Commun. Math. Phys. 325(2), 585–601 (2014)

    Article  ADS  MATH  Google Scholar 

  36. Jitomirskaya, S., Mavi R.: Dynamical bounds for quasiperiodic Schrödinger operators with rough potentials. arXiv:1412.0309 (2014)

  37. Kotani, S.: Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators, Stochastic Analysis(Katata/Kyoto, 1982), (North-Holland Math. Library 32, North-Holland, Amsterdam), 225–247 (1984)

  38. Klein S.: Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a \({{{\mathcal{C} }}^{\infty}}\)-class function. Journal of Functional Analysis 218(2), 255–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Knill, O.: The upper Lyapunov exponent of \({SL(2,\mathbb{R})}\) cocycles: Discontinuity and the problem of positivity, Lecture notes in Math. 1486, Lyapunov exponents (Oberwolfach, 1990) 86–97, (1991)

  40. Kotani S.: Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1, 129–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mañé, R.: Oseledec’s theorem from the generic viewpoint, In: Proceedings of the ICM (Warsaw, 1983), 1269–1276, PWN, Warsaw, (1984)

  42. Mañé, R.: The Lyapunov exponents of generic area preserving diffeomorphisms, In International Conference on Dynamical Systems (Montevideo, 1995), 110–119, Pitman Res. Notes Math. 362, Longman, Harlow, (1996)

  43. Malheiro E.C., Viana M.: Lyapunov exponents of linear cocycles over Markov shifts. Stoch. Dyn. 15(3), 1550020 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Pastur L.A.: Spectral properties of disordered systems in one-body approximation. Comm. Math. Phys. 75, 179–196 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Sinai Ya.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Statist. Phys. 46, 861–909 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  46. Sorets E., Spencer T.: Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun. Math. Phys. 142, 543–566 (1991)

    Article  ADS  MATH  Google Scholar 

  47. Thouvenot J.: An example of discontinuity in the computation of the Lyapunov exponents. Proc. Stekolov Inst. Math. 216, 366–369 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Viana M.: Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Annals of Mathematics 167, 643–680 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Viana M., Yang J.: Physical measures and absolute continuity for one-dimensional center direction. Annales Inst. H. Poincaré-Analyse Non-Linéaire 30, 845–877 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wang Y., You J.: Examples of discontinuity of Lyapunov exponent in smooth quasi-periodic cocycles. Duke Math. J. 162, 2363–2412 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang Y., Zhang Z.: Uniform positivity and continuity of Lyapunov exponents for a class of \({C^2}\) quasiperiodic Schrödinger cocycles. J. Funct. Anal. 268, 2525–2585 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. You J., Zhang S.: Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schröinger cocycle with weak Liouville frequency. Ergod. Theory Dyn. Syst. 34, 1395–1408 (2014)

    Article  MATH  Google Scholar 

  53. Young L.: Lyapunov exponents for some quasi-periodic cocycles. Ergod. Theory Dyn. Syst. 17, 483–504 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang Z.: Positive Lyapunov exponents for quasiperiodic Szegö cocycles. Nonlinearity 25, 1771–1797 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for the useful suggestions. We are also in debt to S. Jitomirskaya for drawing our attention to this question.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangong You.

Additional information

Communicated by J. Marklof

This work was supported by NSFC of China (Grants 11471155, 11771205), Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., You, J. The Set of Smooth Quasi-periodic Schrödinger Cocycles with Positive Lyapunov Exponent is Not Open. Commun. Math. Phys. 362, 801–826 (2018). https://doi.org/10.1007/s00220-018-3223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3223-8

Navigation