Skip to main content
Log in

Continuity of the Measure of the Spectrum for Quasiperiodic Schrödinger Operators with Rough Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study discrete quasiperiodic Schrödinger operators on \({\ell^2(\mathbb{Z})}\) with potentials defined by γ-Hölder functions. We prove a general statement that for γ > 1/2 and under the condition of positive Lyapunov exponents, measure of the spectrum at irrational frequencies is the limit of measures of spectra of periodic approximants. An important ingredient in our analysis is a general result on uniformity of convergence from above in the subadditive ergodic theorem for strictly ergodic cocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry S., André G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israeli Phys. Soc. 3, 133–164 (1980)

    Google Scholar 

  2. Avila, A.: Global theory of one-frequency Schrödinger operators I: Stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity. Preprint, 2009. http://arxiv.org/abs/0905.3902v1 [math.DS], 2009

  3. Avila, A.: Global theory of one-frequency Schrödinger operators II: Acriticality and finiteness of phase transitions for typical potentials. Preprint, 2011

  4. Avila A., Jitomirskaya S.: Almost localization and almost reducibility. J. Eur. Math. Soc. 12, 93–131 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Avila, A. Jitomirskaya, S., Sadel, C.: Complex one-frequency cocycles. J. Eur. Math. Soc. (2013, to appear)

  6. Avila A., Krikorian R.: Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. 164, 911–940 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Avron J., Mouche P.H.M. v., Simon B.: On the measure of the spectrum for the almost Mathieu operator. Commun. Math. Phys. 132, 103–118 (1990)

    Article  MATH  ADS  Google Scholar 

  8. Avron J., Simon B.: Almost periodic Schrödinger operators II. The integrated density of states. Duke Math J. 50, 369–381 (1982)

    Article  MathSciNet  Google Scholar 

  9. Bjerklöv K.: Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations. Erg. The. Dynam. Syst. 25, 1015–1045 (2005)

    Article  MATH  Google Scholar 

  10. Bourgain J., Jitomirskaya S.: Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potentials. J. Stat. Phys. 108, 1203–1218 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. Princeton, NJ: Princeton University Press, 2004

  12. Choi M.-D., Elliott G.A., Yui N.: Gauss polynomials and the rotation algebra. Invent. Math. 99, 225–246 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B.: Schrödinger operators with applications to quantum mechanics and global geometry. Berlin-Heidelberg-Newyork: Springer, 1987

  14. Elliot G.A.: Gaps in the spectrum of an almost periodic Schrödinger operator. Comptes Rendus Math. Acad Sci. Canada 4, 225–259 (1982)

    Google Scholar 

  15. Fröhlich J., Spencer T., Wittwer P.: Localization for a class of one dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132, 5–25 (1990)

    Article  MATH  ADS  Google Scholar 

  16. Furman A.: On the multiplicative ergodic theorem for uniquely ergodic systems. Prob. et Stat. 33(6), 797–815 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Hofstadter D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B. 14, 2239–2249 (1976)

    Article  ADS  Google Scholar 

  18. Jitomirskaya S., Marx C.A.: Analytic quasi-periodic Schrödinger operators and rational frequency approximants. GAFA 22, 1407–1443 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Jitomirskaya S., Marx C.A.: Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model. Commun. Math. Phys. 316, 237–267 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Jitomirskaya S.Ya., Krasovsky I.V.: Continuity of the measure of the spectrum for discrete quasiperiodic operators. Math. Res. Lett. 9(4), 413–421 (2001)

    Article  MathSciNet  Google Scholar 

  21. Jitomirskaya, S.: Ergodic Schrödinger operators (on one foot). In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Providence, RI: Amer. Math. Soc., 2007, pp 613–647

  22. Jitomirskaya S.Ya.: Metal-insulator transition for the almost Mathieu operator. Ann. of Math. 150, 1159–1175 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jitomirskaya S.Ya., Last Y.: Anderson localization for the almost Mathieu equation, III. Semi-uniform localization, continuity of gaps, and measure of the spectrum. Commun. Math. Phys. 195, 1–14 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Jitomirskaya S.Ya., Last Y.: Power law subordinacy and singular spectra. II. Line operators. Commun. Math. Phys. 211, 643–658 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Katznelson, Y.: Harmonic Analysis. Cambridge: Cambridge University Press, 2002, pp. 48–51.

  26. Katznelson Y., Weiss B.: A simple proof of some ergodic theorems. Israel J. Math. 42, 291–296 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Khinchin, A.Ya.: Continued Fractions. New York: Dover, 1964

  28. Kirsch, W.: An invitation to random Schrödinger operators. http://arxiv.org/abs/0709.3707v1 [math-ph], 2007

  29. Last Y.: A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Commun. Math. Phys. 151, 183–192 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Last Y.: Zero measure spectrum for the almost Mathieu operator. Commun. Math. Phys. 164, 421–432 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Shamis M.: Some connections between almost periodic and periodic discrete Schrödinger operators with analytic potentials. J. Spectral Th. 1, 349–362 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Simon, B.: Fifteen problems in mathematical physics. In: Perspectives in mathematics, Basel-Boston: Birkhäuser, 1984, pp. 423–454

  33. Simon B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41(6), 3523–3555 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Sinai Ya.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46(5-6), 861–909 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  35. Spencer, T.: Ergodic Schrödinger operators. In: Analysis, et cetera, London-New York: Academic Press, 1990, pp. 623–637

  36. Wang, Y., You, J.: Examples of discontinuity of Lyapunov exponent in smooth quasi-periodic cocycles. Duke Math J. (2013, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Jitomirskaya.

Additional information

Communicated by B. Simon

The work was supported by NSF Grant DMS-1101578.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jitomirskaya, S., Mavi, R. Continuity of the Measure of the Spectrum for Quasiperiodic Schrödinger Operators with Rough Potentials. Commun. Math. Phys. 325, 585–601 (2014). https://doi.org/10.1007/s00220-013-1856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1856-1

Keywords

Navigation