Skip to main content
Log in

On the Instanton R-matrix

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A torus action on a symplectic variety allows one to construct solutions to the quantum Yang-Baxter equations (R-matrices). For a torus action on cotangent bundles over flag varieties the resulting R-matrices are the standard rational solutions of the Yang-Baxter equation, well known in the theory of quantum integrable systems. The torus action on the instanton moduli space leads to more complicated R-matrices, depending additionally on two equivariant parameters t 1 and t 2. In this paper we derive an explicit expression for the R-matrix associated with the instanton moduli space. We study its matrix elements and its Taylor expansion in the powers of the spectral parameter. Certain matrix elements of this R-matrix give a generating function for the characteristic classes of tautological bundles over the Hilbert schemes in terms of the bosonic cut-and-join operators. In particular we rederive from the R-matrix the well known Lehn’s formula for the first Chern class. We explicitly compute the first several coefficients for the power series expansion of the R-matrix in the spectral parameter. These coefficients are represented by simple contour integrals of some symmetrized bosonic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okounkov, A., Maulik, D.: Quantum Groups and Quantum Cohomology. arXiv:1211.1287v1

  2. Okounkov, A., Pandharipande, R.: Quantum cohomology of the Hilbert scheme of points in the plane. Invent. Math. 179, 523–557. arXiv:math/0411210v2

  3. Lehn, M.: Lectures on hilbert schemes. CRM Proc Lect Notes 38, 1–30

  4. Lehn M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136(1), 157–207 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves, Aspects of Mathematics, vol. E31. Friedr. Vieweg & Sohn, Braunschweig (1997)

  6. Nakajima, H.: Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, pp. 132. American Mathematical Society, Providence, RI (1999)

  7. Nakajima H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nakajima H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nakajima, H.: Jack polynomials and Hilbert schemes of points on surfaces. arXiv:alg-geom/9610021

  10. Nakajima H.: Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. Math. (2) 145(2), 379–388 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. JAMS 14, 145–238

  12. Varagnolo, M., Vasserot, E.: Canonical bases and quiver varieties. Rep. Theor. JAMS. 7, 227–258

  13. McBreen, M.: unpublished

  14. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror symmetry, Clay Mathematics Monographs, vol. 1. pp. 929. American Mathematical Society, Providence, RI (2003)

  15. Atiyah M., Drinfel’d V.G., Hitchin N.J., Manin Y.I.: Construction of instantons. Phys. Lett. A 65, 185–187 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Carlsson E., Okounkov A.: Exts and vertex operators. Duke Math. J. 161(9), 1797–1815 (2012) arXiv:0801.2565

    Article  MathSciNet  MATH  Google Scholar 

  17. Baranovsky V.: Moduli of sheaves on surfaces and action of the oscillator algebra. J. Differ. Geom. 55(2), 193–227 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Costello, K., Grojnowski, I.: Hilbert schemes, Hecke algebras and the Calogero–Sutherland system. arXiv:math/0310189

  19. Grojnowski I.: Instantons and affine algebras. I. The Hilbert scheme and vertex operators. Math. Res. Lett. 3(2), 275–291 (1996) arXiv:math/0310189

    Article  MathSciNet  MATH  Google Scholar 

  20. Haiman M.: Macdonald polynomials and geometry. N Perspect. Geom. Comb. MSRI Publ. 37, 207–254 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of \({{\mathbb{A}}^2}\). arXiv:0905.2555

  22. Mironov A., Morozov A., Natanzon S.: Complete set of cut-and-join operators in Hurwitz–Kontsevich Theory. Theor. Math. Phys. 166, 1–22 (2011) arXiv:0904.4227

    Article  MathSciNet  MATH  Google Scholar 

  23. Mironov A., Morozov A., Natanzon S.: Algebra of differential operators associated with Young diagrams. J. Geom. Phys. 62, 148–155 (2012) arXiv:1012.0433v1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Witten E.: Chern–Simons gauge theory as a string theory. Prog. Math. 133, 637–678 (1995) arXiv:hep-th/9207094v2

    MathSciNet  MATH  Google Scholar 

  25. Aganagic M., Marino M., Vafa C.: All loop topological string amplitudes from Chern-Simons theory. Commun. Math. Phys. 247, 467–512 (2004) arXiv:hep-th/0206164v1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Aganagic M., Klemm A., Marino M., Vafa C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005) arXiv:hep-th/0305132v3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Nekrasov N.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831–864 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nekrasov N., Shatashvili S.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. B Proc. Suppl. 192/193, 91–112 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Nekrasov N., Shatashvili S.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105–119 (2009)

    Article  ADS  MATH  Google Scholar 

  30. Nekrasov, N., Shatashvili, S.: Quantization of integrable systems and four dimensional gauge theories. In: XVIth International Congress on Mathematical Physics, World Science Publishing, pp. 265–289 (2010)

  31. Mironov A., Morozov A., Shakirov Sh.: Matrix model conjecture for exact BS periods and Nekrasov functions. JHEP. 1002, 030 (2010) arXiv:0911.5721

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Alday L., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Reshetikhin N., Turaev V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(1), 547–597 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Aganagic, M., Shakirov, S.: Knot Homology from Refined Chern–Simons Theory.

  36. Dunin-Barkowski P., Mironov A., Morozov A., Sleptsov A., Smirnov A.: Superpolynomials for toric knots from evolution induced by cut-and-join operators. JHEP 03, 012 (2013) arXiv:1106.4305

    Google Scholar 

  37. Anokhina A., Mironov A., Morozov A., Morozov An.: Knot polynomials in the first non-symmetric representation. Nucl. Phys. B 882, 171–197 (2014) arXiv:1211.6375

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Gorsky, E.: q,t-Catalan numbers and knot homology. In: Zeta Functions in Angebra and Geometry, Contemp. Math. Am. Math. Soc., Providence, RI, Vol. 566, pp. 213–232 (2012)

  39. Galakhov D., Mironov A., Morozov A., Smirnov A.: On 3d extensions of AGT relation. Theor. Math. Phys. 172, 939–962 (2012) arXiv:1003.0916

    Article  MathSciNet  MATH  Google Scholar 

  40. Galakhov D., Mironov A., Morozov A., Smirnov A.: On 3d extensions of AGT relation. Teor. Mat. Fiz. 172, 73–99 (2012) arXiv:1104.2589

    Article  MathSciNet  Google Scholar 

  41. Faddeev, L., Kashaev, R.: Mod. Phys. Lett. A9, 427–434 (1994). arXiv:hep-th/9310070

  42. Kashaev R.: Lett. Math. Phys. 43(2), 105–115 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Faddeev, L.: How the algebraic Bethe ansatz works for integrable models. Symetries quantiques (Les Houches, 1995), pp. 149–219, North-Holland (1998)

  44. Faddeev L., Reshetikhin N., Takhtadzhyan L.: Quantization of Lie groups and Lie algebras. Leningr. Math. J. 1(1), 193–225 (1990)

    MathSciNet  MATH  Google Scholar 

  45. Jimbo M., Miwa T.: Algebraic Analysis of Solvable Lattice Models. American Mathematical Society, New York (1995)

    MATH  Google Scholar 

  46. Sklyanin, E.K.: Quantum Inverse Scattering Method. Selected Topics. in Quantum Group and Quantum Integrable Systems: Narkai Lectures on Mathematical Pyhsics: Nankai Institute of Mathematics, China. 2–18 April 1991 (World Scientific, Singapore, 1992), pp. 63–97. arXiv:hep-th/9211111v1

  47. Miwa T., Jimbo M., Date E.: Solitons Differential Equations, Symmetries and Infinite-dimensional Algebras, Cambridge Tracts in Math. Cambridge university press, Cambridge (2000)

    MATH  Google Scholar 

  48. Zabrodin A.: Discrete Hirota’s equation in quantum integrable models. Int. J. Mod. Phys. B. 11, 3125 (1997) arXiv:hep-th/9610039

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Mironov A., Morozov A., Zenkevich Y., Zotov A.: Spectral duality in integrable systems from AGT conjecture. JETP Lett. 97(1), 45–51 (2013) arXiv:1204.0913

    Article  ADS  Google Scholar 

  50. Brion, M.: Equivariant cohomology and equivariant intersection theory. In: Proceedings of the NATO Advanced Study Institute on Representation Theories and Algebraic Geometry, vol. 514, Kluwer Acad. Publ., Dordrecht (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Smirnov.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A. On the Instanton R-matrix. Commun. Math. Phys. 345, 703–740 (2016). https://doi.org/10.1007/s00220-016-2686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2686-8

Navigation