Skip to main content
Log in

Freezing and Decorated Poisson Point Processes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The limiting extremal processes of the branching Brownian motion (BBM), the two-speed BBM, and the branching random walk are known to be randomly shifted decorated Poisson point processes (SDPPP). In the proofs of those results, the Laplace functional of the limiting extremal process is shown to satisfy \({L\left[\theta_{y}f\right]=g\left(y-\tau_{f}\right)}\) for any nonzero, nonnegative, compactly supported, continuous function f, where \({\theta_{y}}\) is the shift operator, \({\tau_{f}}\) is a real number that depends on f, and g is a real function that is independent of f. We show that, under some assumptions, this property characterizes the structure of SDPPP. Moreover, when it holds, we show that g has to be a convolution of the Gumbel distribution with some measure.

The above property of the Laplace functional is closely related to a ‘freezing phenomenon’ that is expected to occur in a wide class of log-correlated fields, and which has played an important role in the analysis of various models. Our results shed light on this intriguing phenomenon and provide a natural tool for proving an SDPPP structure in these and other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aïdékon E., Berestycki J., Brunet É., Shi Z.: Branching Brownian motion seen from its tip. Probab. Theory Relat. Fields 157(1-2), 405–451 (2013)

    Article  MATH  Google Scholar 

  2. Allez R., Rhodes R., Vargas V.: Lognormal \({\star}\) -scale invariant random measures. Probab. Theory Relat. Fields 155(3-4), 751–788 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arguin L.-P., Bovier A., Kistler N.: Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64(12), 1647–1676 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arguin L.-P., Bovier A., Kistler N.: Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22(4), 1693–1711 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arguin L.-P., Bovier A., Kistler N.: An ergodic theorem for the frontier of branching Brownian motion. Electron. J. Probab. 18(53), 25 (2013)

    MathSciNet  Google Scholar 

  6. Arguin L.-P., Bovier A., Kistler N.: The extremal process of branching Brownian motion. Probab. Theory Relat. Fields 157(3-4), 535–574 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arguin L.-P., Olivier Z.: Poisson–Dirichlet statistics for the extremes of a log-correlated Gaussian field. Ann. Appl. Probab. 24(4), 1446–1481 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Biskup, M., Louidor, O.: Extreme local extrema of two-dimensional discrete gaussian free field. preprint, arXiv:1306.2602 [math.PR] (2013)

  9. Bovier, A.: From spin glasses to branching brownian motion: and back?. to appear In: Biskup, M., Cerny, J., Kotecky, R. (eds.) The Proceedings of the 2013 Prague Summer School on Mathematical Statistical Physics

  10. Bovier, A., Hartung, L.: The extremal process of two-speed branching brownian motion. EJP 19(18) (2014)

  11. Bovier, A., Hartung, L.: Variable speed branching brownian motion 1. extremal processes in the weak correlation regime. arXiv:1403.6332 (2014)

  12. Bramson M.: Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31(5), 531–581 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bramson M.: Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Am. Math. Soc. 44(285), iv+190 (1983)

    MathSciNet  Google Scholar 

  14. Bramson, M., Ding, J., Zeitouni, O.: Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. preprint, arXiv:1301.6669 [math.PR] (2013)

  15. Brunet É., Derrida B.: A branching random walk seen from the tip. J. Stat. Phys. 143(3), 420–446 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Brunet, É., Derrida, B.: A branching random walk seen from the tip. preprint, arXiv:1011.4864 [cond-mat.stat-mech] (2011), preliminary version of [15]

  17. Cardy, J.L.: Conformal invariance and statistical mechanics. Champs, cordes et phénomènes critiques (Les Houches, 1988). North-Holland, Amsterdam, pp. 169–245 (1990)

  18. Carpentier D., Le Doussal P.: Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in liouville and sinh-gordon models. Phys. Rev. E 63, 026110 (2001)

    Article  ADS  Google Scholar 

  19. Chauvin B., Rouault A.: Supercritical branching Brownian motion and K-P-P equation in the critical speed-area. Math. Nachr. 149, 41–59 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Darboux M.G.: Sur le théorème fondamental de la géométrie projective. Math. Ann. 17(1), 55–61 (1880)

    Article  MATH  MathSciNet  Google Scholar 

  21. Davydov Y., Molchanov I., Zuyev S.: Strictly stable distributions on convex cones. Electron. J. Probab. 13(11), 259–321 (2008)

    MATH  MathSciNet  Google Scholar 

  22. de Haan, L., Ferreira, A.: Extreme value theory: an introduction. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

  23. Dembo, A., Zeitouni, O.: Large deviations techniques and applications, 2nd edn. Applications of Mathematics, vol. 38. Springer, New York (1998)

  24. Derrida B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3) 24(5), 2613–2626 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51(5-6):817–840 (1988), New directions in statistical mechanics (Santa Barbara, CA, 1987)

  26. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal field theory. In: Proceedings of Graduate Texts in Contemporary Physics. Springer, New York (1997)

  27. Duplantier B., Rhodes R., Sheffield S., Vargas V.: Critical gaussian multiplicative chaos: convergence of the derivative martingale. Ann. Probab. 42(5), 1769–1808 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Feller W.: An introduction to probability theory and its applications. vol. II., 2nd edn. Wiley, New York (1971)

    Google Scholar 

  29. Fernández, R., Fröhlich, J., Sokal, A.D.: Random walks, critical phenomena, and triviality in quantum field theory. In: Proceedings of Texts and Monographs in Physics. Springer, Berlin (1992)

  30. Fyodorov, Y. V.: Multifractality and freezing phenomena in random energy landscapes: an introduction. Phys. A. Stat. Mech. Appl. 389(20), 4229–4254 (2010)

  31. Fyodorov Y.V., Bouchaud J.-P.: Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41(37), 372001 (2008)

    Article  MathSciNet  Google Scholar 

  32. Fyodorov Y.V., Keating J.P.: Freezing transitions and extreme values: random matrix theory, \({\zeta (1/2+it)}\), and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2007), 20120503 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Fyodorov Y.V., Le Doussal P., Rosso A.: Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields. J. Stat. Mech. Theory Exp. 2009(10), P10005 (2009)

    Article  MathSciNet  Google Scholar 

  34. Fyodorov Y.V., Le Doussal P., Rosso A.: Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal 1/f noise. J. Stat. Phys. 149(5), 898–920 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Gumbel E.J.: The distribution of the range. Ann. Math. Stat. 18, 384–412 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kahane J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MATH  MathSciNet  Google Scholar 

  37. Kallenberg O.: Random measures, 3rd edn. Academic Press, London (1983)

    MATH  Google Scholar 

  38. Kallenberg, O.: Foundations of modern probability, 2nd ed.In: Proceedings of Probability and its Applications (New York). Springer, New York (2002)

  39. Kolmogorov A., Petrovsky I., Piscounov N.: Etude de l’ équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscou Univ. Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  40. Lalley S.P., Sellke T.: A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15(3), 1052–1061 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  41. Madaule, T.: Convergence in law for the branching random walk seen from its tip. (2011, preprint). arXiv:1107.2543 [math.PR]

  42. Madaule, T.: Maximum of a log-correlated gaussian field. (2013, preprint). arXiv:1307.1365 [math.PR]

  43. Madaule, T., Rhodes, R., Vargas, V.: Glassy phase and freezing of log-correlated gaussian potentials. (2013, preprint). arXiv:1310.5574 [math.PR]

  44. Maillard P.: A note on stable point processes occurring in branching Brownian motion. Electron. Commun. Probab. 18(5), 9 (2013)

    MathSciNet  Google Scholar 

  45. McKean H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28(3), 323–331 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rhodes, R., Sohier, J., Vargas, V.: Levy multiplicative chaos and star-scale invariant random measures. Ann. Probab. 42, 689–724 (2014)

  47. Rhodes R., Vargas V.: Multidimensional multifractal random measures. Electron. J. Probab. 15(9), 241–258 (2010)

    MATH  MathSciNet  Google Scholar 

  48. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. (2013, preprint). arXiv:1305.6221 [math.PR]

  49. Robert R., Vargas V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3-4), 521–541 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Webb C.: Exact asymptotics of the freezing transition of a logarithmically correlated random energy model. J. Stat. Phys. 145(6), 1595–1619 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Zeitouni.

Additional information

Communicated by H. Spohn

Research partially supported by a grant of the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subag, E., Zeitouni, O. Freezing and Decorated Poisson Point Processes. Commun. Math. Phys. 337, 55–92 (2015). https://doi.org/10.1007/s00220-015-2303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2303-2

Keywords

Navigation