Skip to main content
Log in

Scattering for Nonlinear Schrödinger Equation Under Partial Harmonic Confinement

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the nonlinear Schrödinger equation under a partial quadratic confinement. We show that the global dispersion corresponding to the direction(s) with no potential is enough to prove global in time Strichartz estimates, from which we infer the existence of wave operators, thanks to suitable vector-fields. Conversely, given an initial Cauchy datum, the solution is global in time and asymptotically free, provided that confinement affects one spatial direction only. This stems from anisotropic Morawetz estimates, involving a marginal of the position density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banica, V., Carles, R., Duyckaerts, T.: On scattering for NLS: from Euclidean to hyperbolic space. Discret. Contin. Dyn. Syst. 24(4), 1113–1127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barab, J.E.: Nonexistence of asymptotically free solutions for nonlinear Schrödinger equation. J. Math. Phys. 25, 3270–3273 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Ben Abdallah, N., Castella, F., Méhats, F.: Time averaging for the strongly confined nonlinear Schrödinger equation, using almost periodicity. J. Differ. Equ. 245(1), 154–200 (2008)

    Article  ADS  MATH  Google Scholar 

  4. Bourgain, J.: Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I, Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carles, R.: Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential. Commun. Contemp. Math. 7(4), 483–508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carles, R.: On the Cauchy problem in Sobolev spaces for nonlinear Schrödinger equations with potential. Portugal. Math (N. S.) 65(2), 191–209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carles, R.: Nonlinear Schrödinger equation with time dependent potential. Commun. Math. Sci. 9(4), 937–964 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carles, R., Miller, L.: Semiclassical nonlinear Schrödinger equations with potential and focusing initial data. Osaka J. Math. 41(3), 693–725 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Cazenave, T.: Semilinear Schrödinger equations. Courant lecture notes in Mathematics, vol. 10. New York University Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  10. Cuccagna, S., Visciglia, N.: On asymptotic stability of ground states of NLS with a finite bands periodic potential in 1D. Trans. Am. Math. Soc. 363(5), 2357–2391 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dereziński, J., Gérard, C.: Scattering theory of quantum and classical N-particle systems. Texts and monographs in physics. Springer Verlag, Berlin Heidelberg (1997)

    Book  Google Scholar 

  12. Fujiwara, D.: Remarks on the convergence of the Feynman path integrals. Duke Math. J. 47(3), 559–600 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ginibre, J.: Le problème de Cauchy pour des EDP semi-linéaires périodiques en variable d’espace. Astérisque, Exp. No. 796, p. 163–187, Séminaire Bourbaki, Vol. 1994/95 (1995)

  14. Ginibre, J.: An introduction to nonlinear Schrödinger equations, Nonlinear waves In: Sapporo, Agemi, R., Giga, Y., Ozawa, T. (eds.) GAKUTO International Series, Math. Sciences and Appl., Gakkōtosho, Tokyo, pp. 85–133 (1997)

  15. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. II Scattering theory, general case. J. Funct. Anal. 32, 33–71 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ginibre, J., Velo, G.: Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger and Hartree equations. Quart. Appl. Math. 68(1), 113–134 (2010)

    MATH  MathSciNet  Google Scholar 

  17. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2), 383–427 (2011)

    Article  ADS  MATH  Google Scholar 

  18. Hani, Z., Pausader, B.: On scattering for the quintic defocusing nonlinear Schrödinger equation on \({\mathbb{R} \times \mathbb{T}^2}\). Commun. Pure Appl. Math. 67(9), 1466–1542 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hani, Z., Pausader, B., Tzvetkov, N., Visciglia, N.: Modified scatering for the cubic Schrödinger equation on product spaces and applications, preprint, archived at http://arxiv.org/abs/1311.2275

  20. Josserand, C., Pomeau, Y.: Nonlinear aspects of the theory of Bose–Einstein condensates. Nonlinearity 14(5), R25–R62 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Kapitanski, L., Rodnianski, I., Yajima, K.: On the fundamental solution of a perturbed harmonic oscillator. Topol. Methods Nonlinear Anal. 9(1), 77–106 (1997)

    MATH  MathSciNet  Google Scholar 

  22. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kuksin, S.: Nearly integrable infinite-dimensional Hamiltonian systems, lecture notes in mathematics, vol. 1556. Springer, Berlin (1993)

    Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: Quantum mechanics: non-relativistic theory. Course of Theoretical Physics, Vol. 3, Addison-Wesley Series in advanced physics, Pergamon Press Ltd., London-Paris, Translated from the Russian by Sykes, J.B., Bell, J.S. (1958)

  25. McKean, H.P., Trubowitz, E.: The spectral class of the quantum-mechanical harmonic oscillator. Commun. Math. Phys. 82(4), 471–495 (1981/82)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceseschen Functionen höherer Ordnung. J. Reine Angew. Math. 66, 161–176 (1866)

    Article  MATH  Google Scholar 

  27. Oh, Y.-G.: Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials. J. Differ. Equ. 81(2), 255–274 (1989)

    Article  ADS  MATH  Google Scholar 

  28. Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139, 479–493 (1991)

    Article  ADS  MATH  Google Scholar 

  29. Pitaevskii, L., Stringari, S.: Bose-Einstein condensation. International Series of Monographs on Physics, vol. 116. The Clarendon Press Oxford University Press, Oxford (2003)

    Google Scholar 

  30. Planchon, F., Vega, L.: Bilinear virial identities and applications. Ann. Sci. éc. Norm. Supér. (4) 42(2), 261–290 (2009)

    MATH  MathSciNet  Google Scholar 

  31. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1975)

    MATH  Google Scholar 

  32. Tzvetkov, N., Visciglia, N.: Small data scattering for the nonlinear Schrödinger equation on product spaces. Commun. Partial Differ. Equ. 37(1), 125–135 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Visciglia, N.: Private communication on a joint work in progress (2013)

  34. Yafaev, D.: Scattering theory: some old and new problems. Lecture notes in mathematics, vol. 1735. Springer, Berlin (2000)

    Google Scholar 

  35. Zelditch, S.: Reconstruction of singularities for solutions of Schrödinger’s equation. Commun. Math. Phys. 90(1), 1–26 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Carles.

Additional information

Communicated by W. Schlag

This work was supported by the French ANR projects SchEq (ANR-12-JS01-0005-01) and BECASIM (ANR-12-MONU-0007-04). J. Drumond Silva was partially funded by FCT/Portugal through Project PEst-OE/EEI/LA0009/2013 and Grants PTDC/MAT114397/2009, UTA_CMU/MAT/0007/2009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonelli, P., Carles, R. & Silva, J.D. Scattering for Nonlinear Schrödinger Equation Under Partial Harmonic Confinement. Commun. Math. Phys. 334, 367–396 (2015). https://doi.org/10.1007/s00220-014-2166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2166-y

Keywords

Navigation