Skip to main content
Log in

Reconstruction of singularities for solutions of Schrödinger's equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We determine the behavior in time of singularities of solutions to some Schrödinger equations onR n. We assume the Hamiltonians are of the formH 0+V, where\(H_0 = 1/2\Delta + 1/2 \sum\limits_{k = 1}^n { \omega _k^2 x_k^2 } \), and whereV is bounded and smooth with decaying derivatives. When all ω k =0, the kernelk(t,x,y) of exp (−itH) is smooth inx for every fixed (t,y). When all ω1 are equal but non-zero, the initial singularity “reconstructs” at times\(t = \frac{{m\pi }}{{\omega _1 }}\) and positionsx=(−1)m y, just as ifV=0;k is otherwise regular. In the general case, the singular support is shown to be contained in the union of the hyperplanes\(\{ x|x_{js} = ( - 1)^l js_{y_{js} } \} \), when ω j t/π=l j forj=j 1,...,j r .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asada, K., Fujiwara, D.: On some oscillatory integral transformations inL 2(ℝn). Jpn. J. Math.4, 299–361 (1978)

    Google Scholar 

  2. Chazarain, J.: Spectre d'un Hamiltonien quantique et méchanique classique. Commun. PDE Vol. 5, No. 6, 599–644 (1980)

    Google Scholar 

  3. Duistemaat, J.: Fourier integral operators New York: Courant Institute of Mathematical Sciences, NYU, 1973

    Google Scholar 

  4. Duistermaat, J.: Oscillatory integrals Lagrange immersions and the unfolding of singularities. Commun. Pure Appl. Math.27, 207–281 (1974)

    Google Scholar 

  5. Fujiwara, D.: A construction of the fundamental solution for the Schrödinger equation. J. Anal. Math.35, 41–96 (1979)

    Google Scholar 

  6. Fujiwara, D.: Remarks on convergence of Feynman path integrals. Duke Math. J.47, 559–601 (1980)

    Google Scholar 

  7. Guillemin, V., Sternberg, S.: Geometric asymptotics. AMS Math. Surveys14, Providence, Rhode Island: American Mathematical Society 1977

    Google Scholar 

  8. Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)

    Google Scholar 

  9. Hörmander, L.: Linear partial differential operators. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  10. Kumanogo, H.: Pseudo-differential operators of multiple symbol and the Calderon-Vaillancourt theorem. J. Math. Soc. Jpn.27, 113–120 (1975)

    Google Scholar 

  11. Kumanogo, H.: Hyperbolic systems with diagonal principal part. Commun. P.D.E. Vol.4, 959–1015 (1979)

    Google Scholar 

  12. Marsden, J., Weinstein, A.: Book Review of (GS), BAMS Vol.1, 545–533 (1979)

    Google Scholar 

  13. Maslov, V. P.: Theories des perturbations et methodes asymptotiques. Paris: Dunod 1970

    Google Scholar 

  14. Treves, F.: Pseudo differential and Fourier integral operators. New York: Plenum 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelditch, S. Reconstruction of singularities for solutions of Schrödinger's equation. Commun.Math. Phys. 90, 1–26 (1983). https://doi.org/10.1007/BF01209385

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209385

Keywords

Navigation