Skip to main content
Log in

A review of techno-functional properties of legume proteins and their potential for development of new products

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The purpose of this review is to provide a comprehensive framework for researchers, academics, and food developers regarding the techno-functional properties of the most consumed legume proteins globally, including peas, cowpeas, common beans, chickpeas, fava beans, lentils, and lupins. The review delves into the structural aspects of these proteins in detail and the techniques employed in their extraction and modification. Detailed information is provided on various techno-functional properties, such as solubility, water and oil retention capacity, emulsifying properties, foaming properties, and gelation properties of legume proteins. Practical applications in various food products are highlighted, including bakery items, pasta, snacks, dairy alternatives, sauces, meat analogues, and hybrid products. The review also explores emerging uses, such as the role of these proteins as encapsulating materials and even in 3D food printing. In addition, suggestions for future applications are presented, emphasizing their relevance in the development of innovative products and promoting the comprehensive utilization of legume proteins in the food industry. The importance of these innovations is emphasized in attracting consumers and facilitating a successful transition toward more sustainable plant-based diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available on request from the corresponding author.

References

  1. Ferreira H, Pinto E, Vasconcelos MW (2021) Legumes as a cornerstone of the transition toward more sustainable agri-food systems and diets in Europe. Front Sustain Food Syst 5:694121. https://doi.org/10.3389/fsufs.2021.694121

    Article  Google Scholar 

  2. van Loon MP, Alimagham S, Pronk A et al (2023) Grain legume production in Europe for food, feed and meat-substitution. Global Food Sec 39:100723. https://doi.org/10.1016/j.gfs.2023.100723

    Article  Google Scholar 

  3. Vidaurre-Ruiz J, Bender D, Schönlechner R (2023) Exploiting pseudocereals as novel high protein grains. J Cereal Sci 114:103795. https://doi.org/10.1016/j.jcs.2023.103795

    Article  CAS  Google Scholar 

  4. Nadeeshani H, Senevirathne N, Somaratne G, Bandara N (2022) Recent trends in the utilization of pulse protein in food and industrial applications. Food Sci Technol 2:722–737. https://doi.org/10.1021/acsfoodscitech.1c00448

    Article  CAS  Google Scholar 

  5. de Paiva GL, Caldeira R, de Lima AT et al (2023) Physical and techno-functional properties of a common bean protein concentrate compared to commercial legume ingredients for the plant-based market. Food Hydrocoll 137:108351. https://doi.org/10.1016/j.foodhyd.2022.108351

    Article  CAS  Google Scholar 

  6. Duranti M, Gius C (1997) Legume seeds: protein content and nutritional value. Field Crops Res 53:31–45. https://doi.org/10.1016/S0378-4290(97)00021-X

    Article  Google Scholar 

  7. Boye J, Zare F, Pletch A (2010) Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res Int 43:414–431. https://doi.org/10.1016/j.foodres.2009.09.003

    Article  CAS  Google Scholar 

  8. Foschia M, Horstmann SW, Arendt EK, Zannini E (2017) Legumes as functional ingredients in gluten-free bakery and pasta products. Annu Rev Food Sci Technol 8:75–96. https://doi.org/10.1146/annurev-food-030216-030045

    Article  CAS  PubMed  Google Scholar 

  9. Berru LB, Glorio-Paulet P, Basso C et al (2021) Chemical composition, tocopherol and carotenoid content of seeds from different andean lupin (Lupinus mutabilis) Ecotypes. Plant Foods Hum Nutr 76:98–104. https://doi.org/10.1007/s11130-021-00880-0

    Article  CAS  PubMed  Google Scholar 

  10. Aguiló-Aguayo I, Álvarez C, Saperas M et al (2021) Proteins isolated from Ganxet common bean (Phaseolus vulgaris L.) landrace: techno-functional and antioxidant properties. Int J Food Sci Technol 56:5452–5460. https://doi.org/10.1111/ijfs.15201

    Article  CAS  Google Scholar 

  11. Perović MN, Pajin BS, Antov MG (2022) The effect of enzymatic pretreatment of chickpea on functional properties and antioxidant activity of alkaline protein isolate. Food Chem 374:131809. https://doi.org/10.1016/j.foodchem.2021.131809

    Article  CAS  PubMed  Google Scholar 

  12. Amoah I, Ascione A, Muthanna F et al (2023) Sustainable strategies for increasing legume consumption: culinary and educational approaches. Foods 12:2265. https://doi.org/10.3390/foods12112265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bessada SMF, Barreira JCM, Oliveira MBPP (2019) Pulses and food security: dietary protein, digestibility, bioactive and functional properties. Trends Food Sci Technol 93:53–68. https://doi.org/10.1016/j.tifs.2019.08.022

    Article  CAS  Google Scholar 

  14. Sparvoli F, Bollini R, Cominelli E (2015) Nutritional value. Grain legumes. Springer, New York, pp 291–325

    Chapter  Google Scholar 

  15. Boukid F, Zannini E, Carini E, Vittadini E (2019) Pulses for bread fortification: a necessity or a choice? Trends Food Sci Technol 88:416–428. https://doi.org/10.1016/j.tifs.2019.04.007

    Article  CAS  Google Scholar 

  16. Aryee ANA, Boye JI (2017) Comparative study of the effects of processing on the nutritional, physicochemical and functional properties of lentil. J Food Process Preserv 41:e12824. https://doi.org/10.1111/jfpp.12824

    Article  CAS  Google Scholar 

  17. Campbell L, Euston SR, Ahmed MA (2016) Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake. Food Chem 194:1230–1237. https://doi.org/10.1016/j.foodchem.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Gundogan R, Can Karaca A (2020) Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT-Food Sci Technol 130:109609. https://doi.org/10.1016/j.lwt.2020.109609

    Article  CAS  Google Scholar 

  19. Can Karaca A (2020) Encapsulation of black pepper seed oil using maltodextrin and pea protein. Food Sci Technol Int 26:369–378. https://doi.org/10.1177/1082013219896429

    Article  CAS  PubMed  Google Scholar 

  20. Moongngarm A, Sasanam S, Pinsiri W et al (2014) Functional properties of protein concentrate from black cowpea and its application. Am J Appl Sci 11:1811–1818. https://doi.org/10.3844/ajassp.2014.1811.1818

    Article  CAS  Google Scholar 

  21. Saavedra JP, Güémes-Vera N (2014) Comparative study of functional properties of protein isolates obtained from three Lupinus species. Adv Biores 4:106–116

    Google Scholar 

  22. Toews R, Wang N (2013) Physicochemical and functional properties of protein concentrates from pulses. Food Res Int 52:445–451. https://doi.org/10.1016/j.foodres.2012.12.009

    Article  CAS  Google Scholar 

  23. Shevkani K, Singh N, Chen Y et al (2019) Pulse proteins: secondary structure, functionality and applications. J Food Sci Technol. https://doi.org/10.1007/s13197-019-03723-8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Asen ND, Aluko RE, Martynenko A et al (2023) Yellow field pea protein (Pisum sativum L): extraction technologies, functionalities, and applications. Foods 12:3978. https://doi.org/10.3390/foods12213978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hall C, Hillen C, Garden Robinson J (2017) Composition, nutritional value, and health benefits of pulses. Cereal Chem 94:11–31. https://doi.org/10.1094/CCHEM-03-16-0069-FI

    Article  CAS  Google Scholar 

  26. Lampart-Szczapa E (2001) Legume and oilseed proteins. Chemical and functional properties of food proteins. CRC Press, pp 407–433

    Google Scholar 

  27. Kiosseoglou V, Paraskevopoulou A (2011) Functional and physicochemical properties of pulse proteins. Pulse foods. Elsevier, pp 57–90

    Chapter  Google Scholar 

  28. Shi Z, Blecker C, Richel A et al (2022) Three-dimensional (3D) printability assessment of food-ink systems with superfine ground white common bean (Phaseolus vulgaris L.) protein based on different 3D food printers. LWT-Food Sci Technol 155:112906. https://doi.org/10.1016/j.lwt.2021.112906

    Article  CAS  Google Scholar 

  29. Hojilla-Evangelista MP, Sutivisedsak N, Evangelista RL et al (2018) Composition and functional properties of saline-soluble protein concentrates prepared from four common dry beans (Phaseolus vulgaris L.). J Am Oil Chem Soc 95:1001–1012. https://doi.org/10.1002/aocs.12135

    Article  CAS  Google Scholar 

  30. Vogelsang-O’Dwyer M, Petersen IL, Joehnke MS et al (2020) Comparison of faba bean protein ingredients produced using dry fractionation and isoelectric precipitation: techno-functional. Nutr Environ Perform Foods 9:322. https://doi.org/10.3390/foods9030322

    Article  CAS  Google Scholar 

  31. Gravel A, Dubois-Laurin F, Doyen A (2023) Effects of hexane on protein profile and techno-functional properties of pea protein isolates. Food Chem 406:135069. https://doi.org/10.1016/j.foodchem.2022.135069

    Article  CAS  PubMed  Google Scholar 

  32. Vogelsang-O’Dwyer M, Bez J, Petersen IL et al (2020) Techno-functional, nutritional and environmental performance of protein isolates from blue lupin and white lupin. Foods 9:230. https://doi.org/10.3390/foods9020230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stone AK, Karalash A, Tyler RT et al (2015) Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res Int 76:31–38. https://doi.org/10.1016/j.foodres.2014.11.017

    Article  CAS  Google Scholar 

  34. Karaca AC, Low N, Nickerson M (2011) Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res Int 44:2742–2750. https://doi.org/10.1016/j.foodres.2011.06.012

    Article  CAS  Google Scholar 

  35. Miranda CG, Speranza P, Kurozawa LE, Kawazoe Sato AC (2022) Lentil protein: impact of different extraction methods on structural and functional properties. Heliyon 8:e11775. https://doi.org/10.1016/j.heliyon.2022.e11775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vioque J, Alaiz M, Girón-Calle J (2012) Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chem 132:67–72. https://doi.org/10.1016/j.foodchem.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  37. Sirelkhatim Balla Elharadallou IIK (2013) Functional properties of cowpea (Vigna Ungiculata L. Walp), and Lupin (Lupinus termis) flour and protein isolates. J Nutr Food Sci. https://doi.org/10.4172/2155-9600.1000234

    Article  Google Scholar 

  38. Boateng ID (2023) Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 406:135079. https://doi.org/10.1016/j.foodchem.2022.135079

    Article  CAS  PubMed  Google Scholar 

  39. Cao P-H, Zhang C-X, Ma Y-X et al (2023) Extraction of protein from sesame meal: Impact of deep eutectic solvents on protein structure and functionality. LWT-Food Sci Technol 187:115366. https://doi.org/10.1016/j.lwt.2023.115366

    Article  CAS  Google Scholar 

  40. Patra A, Arun Prasath V, Pandiselvam R (2023) Deep eutectic solvent: an emerging trend for extraction of plant proteins. J Mol Liq 389:122887. https://doi.org/10.1016/j.molliq.2023.122887

    Article  CAS  Google Scholar 

  41. Hewage A, Olatunde OO, Nimalaratne C et al (2024) Improved protein extraction technology using deep eutectic solvent system for producing high purity fava bean protein isolates at mild conditions. Food Hydrocoll 147:109283. https://doi.org/10.1016/j.foodhyd.2023.109283

    Article  CAS  Google Scholar 

  42. Eckert E, Han J, Swallow K et al (2019) Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chem 96:725–741. https://doi.org/10.1002/cche.10169

    Article  CAS  Google Scholar 

  43. Venkateswara Rao M, Sunil CK, Rawson A et al (2023) Modifying the plant proteins techno-functionalities by novel physical processing technologies: a review. Crit Rev Food Sci Nutr 63:4070–4091. https://doi.org/10.1080/10408398.2021.1997907

    Article  PubMed  Google Scholar 

  44. Schlegel K, Sontheimer K, Eisner P, Schweiggert-Weisz U (2020) Effect of enzyme-assisted hydrolysis on protein pattern, technofunctional, and sensory properties of lupin protein isolates using enzyme combinations. Food Sci Nutr 8:3041–3051. https://doi.org/10.1002/fsn3.1286

    Article  CAS  PubMed  Google Scholar 

  45. Tesarowicz I, Zawiślak A, Maciejaszek I, Surówka K (2022) Effect of alcalase modification of yellow lupin (Lupinus luteus L.) protein isolate on some functional properties and antioxidant activity. Int J Food Sci 2022:1–10. https://doi.org/10.1155/2022/6187441

    Article  CAS  Google Scholar 

  46. Gao K, Zha F, Rao J, Chen B (2024) Nonenzymatic glycation as a tunable technique to modify plant proteins: a comprehensive review on reaction process, mechanism, conjugate structure, and functionality. Compr Rev Food Sci Food Saf 23:1–24. https://doi.org/10.1111/1541-4337.13269

    Article  CAS  PubMed  Google Scholar 

  47. Ohanenye IC, Ekezie F-GC, Sarteshnizi RA et al (2022) Legume seed protein digestibility as influenced by traditional and emerging physical processing technologies. Foods 11:2299. https://doi.org/10.3390/foods11152299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abd El-Hady EA, Habiba RA (2003) Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT Food Sci Technol 36:285–293. https://doi.org/10.1016/S0023-6438(02)00217-7

    Article  CAS  Google Scholar 

  49. Damodaran S (2017) Amino acids, peptides, and proteins. In: Fennema’s food chemistry. pp 237–351

  50. Xu Y, Obielodan M, Sismour E et al (2017) Physicochemical, functional, thermal and structural properties of isolated Kabuli chickpea proteins as affected by processing approaches. Int J Food Sci Technol 52:1147–1154. https://doi.org/10.1111/ijfs.13400

    Article  CAS  Google Scholar 

  51. Zhang Y, Huang X, Zeng X et al (2023) Preparation, functional properties, and nutritional evaluation of chickpea protein concentrate. Cereal Chem 100:310–320. https://doi.org/10.1002/cche.10608

    Article  CAS  Google Scholar 

  52. Krause M, Sørensen JC, Petersen IL et al (2023) Associating compositional, nutritional and techno-functional characteristics of faba bean (Vicia faba L) protein isolates and their production side-streams with potential food applications. Foods 12:919. https://doi.org/10.3390/foods12050919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vogelsang-O’Dwyer M, Sahin AW, Bot F et al (2023) Enzymatic hydrolysis of lentil protein concentrate for modification of physicochemical and techno-functional properties. Eur Food Res Technol 249:573–586. https://doi.org/10.1007/s00217-022-04152-2

    Article  CAS  Google Scholar 

  54. Chang L, Lan Y, Bandillo N et al (2022) Plant proteins from green pea and chickpea: extraction, fractionation, structural characterization and functional properties. Food Hydrocoll 123:107165. https://doi.org/10.1016/j.foodhyd.2021.107165

    Article  CAS  Google Scholar 

  55. Ladjal-Ettoumi Y, Boudries H, Chibane M, Romero A (2016) Pea, chickpea and lentil protein isolates: physicochemical characterization and emulsifying properties. Food Biophys 11:43–51. https://doi.org/10.1007/s11483-015-9411-6

    Article  Google Scholar 

  56. Loushigam G, Shanmugam A (2023) Modifications to functional and biological properties of proteins of cowpea pulse crop by ultrasound-assisted extraction. Ultrason Sonochem 97:106448. https://doi.org/10.1016/j.ultsonch.2023.106448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang F, Zhang Y, Xu L, Ma H (2020) An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT-Food Sci Technol 127:109348. https://doi.org/10.1016/j.lwt.2020.109348

    Article  CAS  Google Scholar 

  58. Ma Y, Zhang J, He J et al (2023) Effects of high-pressure homogenization on the physicochemical, foaming, and emulsifying properties of chickpea protein. Food Res Int 170:112986. https://doi.org/10.1016/j.foodres.2023.112986

    Article  CAS  PubMed  Google Scholar 

  59. Saricaoglu FT (2020) Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. Int J Biol Macromol 144:760–769. https://doi.org/10.1016/j.ijbiomac.2019.11.034

    Article  CAS  PubMed  Google Scholar 

  60. Kinsella JE, Melachouris N (1976) Functional properties of proteins in foods: a survey. Crit Rev Food Sci Nutr 7:219–280. https://doi.org/10.1080/10408397609527208

    Article  CAS  Google Scholar 

  61. Lee HW, Lu Y, Zhang Y et al (2021) Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chem 358:129749. https://doi.org/10.1016/j.foodchem.2021.129749

    Article  CAS  PubMed  Google Scholar 

  62. Shrestha S, van Hag L, ’t, Haritos V, Dhital S, (2023) Rheological and textural properties of heat-induced gels from pulse protein isolates: lentil, mungbean and yellow pea. Food Hydrocoll 143:108904. https://doi.org/10.1016/j.foodhyd.2023.108904

    Article  CAS  Google Scholar 

  63. Shevkani K, Singh N, Kaur A, Rana JC (2015) Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocoll 43:679–689. https://doi.org/10.1016/j.foodhyd.2014.07.024

    Article  CAS  Google Scholar 

  64. Shevkani K, Kaur A, Kumar S, Singh N (2015) Cowpea protein isolates: functional properties and application in gluten-free rice muffins. LWT-Food Sci Technol 63:927–933. https://doi.org/10.1016/j.lwt.2015.04.058

    Article  CAS  Google Scholar 

  65. Piornos JA, Burgos-Díaz C, Ogura T et al (2015) Functional and physicochemical properties of a protein isolate from Alu Prot -CGNA: a novel protein-rich lupin variety (Lupinus luteus). Food Res Int 76:719–724. https://doi.org/10.1016/j.foodres.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  66. Rudra SG, Sethi S, Jha SK, Kumar R (2016) Physico-chemical and functional properties of cowpea protein isolate as affected by the dehydration technique. Legum Res 39:370–378. https://doi.org/10.18805/lr.v0iOF.9441

    Article  Google Scholar 

  67. Shevkani K, Singh N (2014) Influence of kidney bean, field pea and amaranth protein isolates on the characteristics of starch-based gluten-free muffins. Int J Food Sci Technol 49:2237–2244. https://doi.org/10.1111/ijfs.12537

    Article  CAS  Google Scholar 

  68. Peyrano F, Speroni F, Avanza MV (2016) Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innov Food Sci Emerg Technol 33:38–46. https://doi.org/10.1016/j.ifset.2015.10.014

    Article  CAS  Google Scholar 

  69. Tan E-S, Ying-Yuan N, Gan C-Y (2014) A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimisation. Food Chem 152:447–455. https://doi.org/10.1016/j.foodchem.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  70. Pico J, Reguilón MP, Bernal J, Gómez M (2019) Effect of rice, pea, egg white and whey proteins on crust quality of rice flour-corn starch based gluten-free breads. J Cereal Sci 86:92–101. https://doi.org/10.1016/j.jcs.2019.01.014

    Article  CAS  Google Scholar 

  71. Aider M, Sirois-Gosselin M, Boye JI (2012) Pea, lentil and chickpea protein application in bread making. J Food Res 1:160. https://doi.org/10.5539/jfr.v1n4p160

    Article  Google Scholar 

  72. Ziobro R, Juszczak L, Witczak M, Korus J (2016) Non-gluten proteins as structure forming agents in gluten free bread. J Food Sci Technol 53:571–580. https://doi.org/10.1007/s13197-015-2043-5

    Article  CAS  PubMed  Google Scholar 

  73. Miñarro B, Albanell E, Aguilar N et al (2012) Effect of legume flours on baking characteristics of gluten-free bread. J Cereal Sci 56:476–481. https://doi.org/10.1016/j.jcs.2012.04.012

    Article  CAS  Google Scholar 

  74. Shaabani S, Yarmand MS, Kiani H, Emam-Djomeh Z (2018) The effect of chickpea protein isolate in combination with transglutaminase and xanthan on the physical and rheological characteristics of gluten free muffins and batter based on millet flour. LWT-Food Sci Technol 90:362–372. https://doi.org/10.1016/j.lwt.2017.12.023

    Article  CAS  Google Scholar 

  75. Matos ME, Sanz T, Rosell CM (2014) Establishing the function of proteins on the rheological and quality properties of rice based gluten free muffins. Food Hydrocoll 35:150–158. https://doi.org/10.1016/j.foodhyd.2013.05.007

    Article  CAS  Google Scholar 

  76. Yiu CC-Y, Liang SW, Mukhtar K et al (2023) Food emulsion gels from plant-based ingredients: formulation, processing, and potential applications. Gels 9:366. https://doi.org/10.3390/gels9050366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Banu I, Patrașcu L, Vasilean I et al (2023) Influence of the protein-based emulsions on the rheological, thermo-mechanical and baking performance of muffin formulations. Appl Sci 13:3316. https://doi.org/10.3390/app13053316

    Article  CAS  Google Scholar 

  78. El-Sohaimy SA, Brennan M, Darwish AMG, Brennan C (2020) Physicochemical, texture and sensorial evaluation of pasta enriched with chickpea flour and protein isolate. Ann Agric Sci 65:28–34. https://doi.org/10.1016/j.aoas.2020.05.005

    Article  Google Scholar 

  79. Hoehnel A, Bez J, Petersen IL et al (2022) Combining high-protein ingredients from pseudocereals and legumes for the development of fresh high-protein hybrid pasta: enhanced nutritional profile. J Sci Food Agric 102:5000–5010. https://doi.org/10.1002/jsfa.11015

    Article  CAS  PubMed  Google Scholar 

  80. Sofi SA, Singh J, Chhikara N et al (2020) Quality characterization of gluten free noodles enriched with chickpea protein isolate. Food Biosci 36:100626. https://doi.org/10.1016/j.fbio.2020.100626

    Article  CAS  Google Scholar 

  81. Philipp C, Buckow R, Silcock P, Oey I (2017) Instrumental and sensory properties of pea protein-fortified extruded rice snacks. Food Res Int 102:658–665. https://doi.org/10.1016/j.foodres.2017.09.048

    Article  CAS  PubMed  Google Scholar 

  82. Martin A, Schmidt V, Osen R et al (2022) Texture, sensory properties and functionality of extruded snacks from pulses and pseudocereal proteins. J Sci Food Agric 102:5011–5021. https://doi.org/10.1002/jsfa.11041

    Article  CAS  PubMed  Google Scholar 

  83. Moll P, Salminen H, Schmitt C, Weiss J (2023) Pea protein–sugar beet pectin binders can provide cohesiveness in burger type meat analogues. Eur Food Res Technol 249:1089–1096. https://doi.org/10.1007/s00217-022-04199-1

    Article  CAS  Google Scholar 

  84. Moll P, Salminen H, Stadtmueller L et al (2022) Comparison of binding properties of a laccase-treated pea protein-sugar beet pectin mixture with methylcellulose in a bacon-type meat analogue. Foods 12:85. https://doi.org/10.3390/foods12010085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Samard S, Ryu G (2019) Physicochemical and functional characteristics of plant protein-based meat analogs. J Food Process Preserv 43:e14123. https://doi.org/10.1111/jfpp.14123

    Article  CAS  Google Scholar 

  86. Broucke K, Van Poucke C, Duquenne B et al (2022) Ability of (extruded) pea protein products to partially replace pork meat in emulsified cooked sausages. Innov Food Sci Emerg Technol 78:102992. https://doi.org/10.1016/j.ifset.2022.102992

    Article  CAS  Google Scholar 

  87. Ramos Diaz JM, Kantanen K, Edelmann JM et al (2022) Fibrous meat analogues containing oat fiber concentrate and pea protein isolate: mechanical and physicochemical characterization. Innov Food Sci Emerg Technol 77:102954. https://doi.org/10.1016/j.ifset.2022.102954

    Article  CAS  Google Scholar 

  88. Peñaranda I, Garrido MD, García-Segovia P et al (2023) Enriched pea protein texturing: physicochemical characteristics and application as a substitute for meat in hamburgers. Foods 12:1303. https://doi.org/10.3390/foods12061303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Revilla I, Santos S, Hernández-Jiménez M, Vivar-Quintana AM (2022) The Effects of the Progressive Replacement of Meat with Texturized Pea Protein in Low-Fat Frankfurters Made with Olive Oil. Foods 11:923. https://doi.org/10.3390/foods11070923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mokni Ghribi A, Ben Amira A, Maklouf Gafsi I et al (2018) Toward the enhancement of sensory profile of sausage “Merguez” with chickpea protein concentrate. Meat Sci 143:74–80. https://doi.org/10.1016/j.meatsci.2018.04.025

    Article  CAS  PubMed  Google Scholar 

  91. Shoaib A, Sahar A, Sameen A et al (2018) Use of pea and rice protein isolates as source of meat extenders in the development of chicken nuggets. J Food Process Preserv 42:e13763. https://doi.org/10.1111/jfpp.13763

    Article  CAS  Google Scholar 

  92. Wang Y, Yuan J, Li K et al (2023) Evaluation of chickpea protein isolate as a partial replacement for phosphate in pork meat batters: techno-functional properties and molecular characteristic modifications. Food Chem 404:134585. https://doi.org/10.1016/j.foodchem.2022.134585

    Article  CAS  PubMed  Google Scholar 

  93. Yousseef M, Lafarge C, Valentin D et al (2016) Fermentation of cow milk and/or pea milk mixtures by different starter cultures: physico-chemical and sensorial properties. LWT-Food Sci Technol 69:430–437. https://doi.org/10.1016/j.lwt.2016.01.060

    Article  CAS  Google Scholar 

  94. Vogelsang-O’Dwyer M, Sahin AW, Zannini E, Arendt EK (2022) Physicochemical and nutritional properties of high protein emulsion-type lupin-based model milk alternatives: effect of protein source and homogenization pressure. J Sci Food Agric 102:5086–5097. https://doi.org/10.1002/jsfa.11230

    Article  CAS  PubMed  Google Scholar 

  95. Grasso N, Bot F, Roos YH et al (2023) Plant-based alternatives to cheese formulated using blends of zein and chickpea protein ingredients. Foods 12:1492. https://doi.org/10.3390/foods12071492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aludatt MH, Rababah T, Alhamad MN et al (2017) Preparation of mayonnaise from extracted plant protein isolates of chickpea, broad bean and lupin flour: chemical, physiochemical, nutritional and therapeutic properties. J Food Sci Technol 54:1395–1405. https://doi.org/10.1007/s13197-017-2551-6

    Article  CAS  PubMed  Google Scholar 

  97. Cabrita M, Simões S, Álvarez-Castillo E et al (2023) Development of innovative clean label emulsions stabilized by vegetable proteins. Int J Food Sci Technol 58:406–422. https://doi.org/10.1111/ijfs.15963

    Article  CAS  Google Scholar 

  98. Vieira MR, Simões S, Carrera-Sánchez C, Raymundo A (2023) Development of a clean label mayonnaise using fruit flour. Foods 12:2111. https://doi.org/10.3390/foods12112111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ariyarathna IR, Nedra Karunaratne D (2015) Use of chickpea protein for encapsulation of folate to enhance nutritional potency and stability. Food Bioprod Process 95:76–82. https://doi.org/10.1016/j.fbp.2015.04.004

    Article  CAS  Google Scholar 

  100. Benito-Román Ó, Sanz T, Beltrán S (2020) Microencapsulation of rice bran oil using pea protein and maltodextrin mixtures as wall material. Heliyon 6:e03615. https://doi.org/10.1016/j.heliyon.2020.e03615

    Article  PubMed  PubMed Central  Google Scholar 

  101. Johansson M, Nilsson K, Knab F, Langton M (2022) Faba bean fractions for 3D Printing of protein- starch- and fibre-rich. Foods Processes 10:466. https://doi.org/10.3390/pr10030466

    Article  CAS  Google Scholar 

  102. Oyinloye TM, Yoon WB (2021) Stability of 3D printing using a mixture of pea protein and alginate: precision and application of additive layer manufacturing simulation approach for stress distribution. J Food Eng 288:110127. https://doi.org/10.1016/j.jfoodeng.2020.110127

    Article  CAS  Google Scholar 

  103. Chakraborty P, Eqbal MdD, Ahmed J (2023) Three-dimensional printing and its application to legume proteins: a review. Legume Sci 5:e172. https://doi.org/10.1002/leg3.172

    Article  Google Scholar 

  104. Bedoya MG, Montoya DR, Tabilo-Munizaga G et al (2022) Promising perspectives on novel protein food sources combining artificial intelligence and 3D food printing for food industry. Trends Food Sci Technol 128:38–52. https://doi.org/10.1016/j.tifs.2022.05.013

    Article  CAS  Google Scholar 

  105. Chuanxing F, Qi W, Hui L et al (2018) Effects of pea protein on the properties of potato starch-based 3D printing materials. Int J Food Eng 14:20170297. https://doi.org/10.1515/ijfe-2017-0297

    Article  CAS  Google Scholar 

  106. Hayat I, Ahmad A, Rafique N et al (2022) Quality attributes of cookies enriched with functional protein isolate from red kidney beans. Czech J Food Sci 40:367–374. https://doi.org/10.17221/243/2021-CJFS

    Article  CAS  Google Scholar 

  107. Schreuders FKG, Dekkers BL, Bodnár I et al (2019) Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J Food Eng 261:32–39. https://doi.org/10.1016/j.jfoodeng.2019.04.022

    Article  CAS  Google Scholar 

  108. Kalayci A, Ozel B, Oztop MH, Alpas H (2023) Investigation of the effects of high hydrostatic pressure on the functional properties of pea protein isolate. J Food Process Eng. https://doi.org/10.1111/jfpe.14243

    Article  Google Scholar 

  109. Sun H, Sun J, Dou N et al (2023) Characterization and comparison of structure, thermal and functional characteristics of various commercial pea proteins. Food Biosci 53:102740. https://doi.org/10.1016/j.fbio.2023.102740

    Article  CAS  Google Scholar 

  110. Kang S, Zhang J, Guo X et al (2022) Effects of ultrasonic treatment on the structure, functional properties of chickpea protein isolate and its digestibility in vitro. Foods 11:880. https://doi.org/10.3390/foods11060880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of CONCYTEC (Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica) through PROCIENCIA Program, within the framework of Contest E041-2023-01 [Contract Nº PE501082513-2023-PROCIENCIA].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Vidaurre-Ruiz.

Ethics declarations

Conflict of interest

The authors declare that they have no any conflict of interest that could affect the contents of the reported work.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huamaní-Perales, C., Vidaurre-Ruiz, J., Salas-Valerio, W. et al. A review of techno-functional properties of legume proteins and their potential for development of new products. Eur Food Res Technol (2024). https://doi.org/10.1007/s00217-024-04536-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00217-024-04536-6

Keywords

Navigation