Skip to main content

Advertisement

Log in

Chemical Composition, Tocopherol and Carotenoid Content of Seeds from Different Andean Lupin (Lupinus mutabilis) Ecotypes

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Andean lupin (Lupinus mutabilis) seeds are appreciated for their high protein and lipid contents and have potential applications as ingredients in food, cosmetic, and pharmaceutical industries. Nevertheless, the information about the seed composition (especially in lipophilic antioxidants) of ecotypes from distinct cropping areas is currently limited. Thus, the aim of the present research was to assess the morphological characteristics, chemical composition, tocopherol and carotenoid contents of the seeds of 33 Andean lupin ecotypes from different Peruvian regions, along with three L. albus, one L. angustifolius and one L. luteus controls. Significant differences were noted among the Andean ecotypes for all analyzed features. The protein, lipid and ash contents were 32.0–46.9, 13.6–18.6 and 2.7–4.4 g/100 g dry matter (DM), respectively. The seeds were rich in tocopherols (172.1–249.8 mg/kg DM; γ-tocopherol was 98% of total tocols) and low in carotenoids (0.69–2.89 mg/kg DM). Debittering increased the tocopherol content (227.0–378.2 mg/kg DM), probably because of the soluble components loss, although the carotenoid concentration remained unchanged. The Andean lupins had higher protein, lipid and tocopherol contents than L. albus and L. angustifolius; the L. luteus values were within the L. mutabilis range. These results suggest that L. mutabilis harbors nutritional characteristics that are well suited to modern food trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arenas-Jal M, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E (2020) Trends in the food and sports nutrition industry: a review. Crit Rev Food Sci Nutr 60:2405–2421. https://doi.org/10.1080/10408398.2019.1643287

  2. Gulisano A, Alves S, Neves Martins J, Trindade LM (2019) Genetics and breeding of Lupinus mutabilis: an emerging protein crop. Front Plant Sci 10:1385. https://doi.org/10.3389/fpls.2019.01385

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jacobsen SE, Mujica A (2008) Geographical distribution of the Andean lupin (Lupinus mutabilis Sweet). Plant Genet Resour Newsl 155:1–8 https://www.bioversityinternational.org/fileadmin/PGR/article-issue_155-art_1-lang_en.html

    Google Scholar 

  4. Caligari PDS, Römer P, Rahim MA, Huyghe C, Neves-Martins J, Sawicka-Sienkiewicz EJ (2000) The potential of Lupinus mutabilis as a crop. In: Linking research and marketing opportunities for pulses in the 21st century. Springer, Dordrecht, pp 569–573

    Chapter  Google Scholar 

  5. Erbaş M, Certel M, Uslu MK (2005) Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem 89:341–345. https://doi.org/10.1016/j.foodchem.2004.02.040

    Article  CAS  Google Scholar 

  6. Trugo LC, von Baer D, von Baer E (2003) Lupin. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition, 2nd edn. Academic Press, Oxford, UK, pp 3623–3629

    Chapter  Google Scholar 

  7. Annicchiarico P, Manunza P, Arnoldi A, Boschin G (2014) Quality of Lupinus albus L. (white lupin) seed: extent of genotypic and environmental effects. J Agric Food Chem 62:6539–6545. https://doi.org/10.1021/jf405615k

    Article  CAS  PubMed  Google Scholar 

  8. Boschin G, Arnoldi A (2011) Legumes are valuable sources of tocopherols. Food Chem 127:1199–1203. https://doi.org/10.1016/j.foodchem.2011.01.124

    Article  CAS  PubMed  Google Scholar 

  9. Fernández-Marín B, Milla R, Martín-Robles N, Arc E, Kranner I, Becerril JM, García-Plazaola JI (2014) Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biol 14:1599. https://doi.org/10.1186/s12870-014-0385-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magalhães SC, Taveira M, Cabrita AR, Fonseca AJ, Valentão P, Andrade PB (2017) European marketable grain legume seeds: further insight into phenolic compounds profiles. Food Chem 215:177–184. https://doi.org/10.1016/j.foodchem.2016.07.152

    Article  CAS  PubMed  Google Scholar 

  11. Multari S, Neacsu M, Scobbie L, Cantlay L, Duncan G, Vaughan N, Stewart D, Russell WR (2016) Nutritional and phytochemical content of high-protein crops. J Agric Food Chem 64:7800–7811. https://doi.org/10.1021/acs.jafc.6b00926

    Article  CAS  PubMed  Google Scholar 

  12. Siger A, Czubinski J, Kachlicki P, Dwiecki K, Lampart-Szczapa E, Nogala-Kalucka M (2012) Antioxidant activity and phenolic content in three lupin species. J Food Compos Anal 25:190–197. https://doi.org/10.1016/j.jfca.2011.10.002

    Article  CAS  Google Scholar 

  13. El-Difrawi EA, Hudson BJ (1979) Identification and estimation of carotenoids in the seeds of four Lupinus species. J Sci Food Agric 30:1168–1170. https://doi.org/10.1002/jsfa.2740301209

    Article  CAS  Google Scholar 

  14. Chirinos R, Pedreschi R, Rogez H, Larondelle Y, Campos D (2013) Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Ind Crops Prod 47:145–152. https://doi.org/10.1016/j.indcrop.2013.02.025

    Article  CAS  Google Scholar 

  15. Gálvez Ranilla L, Genovese MI, Lajolo FM (2009) Isoflavones and antioxidant capacity of Peruvian and Brazilian lupin cultivars. J Food Compos Anal 22:397–404. https://doi.org/10.1016/j.jfca.2008.06.011

  16. Córdova-Ramos JS, Glorio-Paulet P, Camarena F, Brandolini A, Hidalgo A (2020) Andean lupin (Lupinus mutabilis Sweet): processing effects on chemical composition, heat damage and in vitro protein digestibility. Cereal Chem 97:827–835. https://doi.org/10.1002/cche.10303

    Article  CAS  Google Scholar 

  17. Cortés-Avendaño P, Tarvainen M, Suomela JP, Glorio-Paulet P, Yang B, Repo-Carrasco-Valencia R (2020) Profile and content of residual alkaloids in ten ecotypes of Lupinus mutabilis Sweet after aqueous debittering process. Plant Foods Hum Nutr 75:184–191. https://doi.org/10.1007/s11130-020-00799-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. AOAC - Association of Official Analytical Chemists (2000) Methods 920.87, 923.05, 923.03, 925.10 In: Official Methods of Analysis (17th ed.) Gaithersburg. In: MD. The Association of Official Analytical Chemists, USA

    Google Scholar 

  19. Hidalgo A, Brandolini A (2010) Tocols stability during bread, water biscuit and pasta processing from wheat flours. J Cereal Sci 52:254–259. https://doi.org/10.1016/j.jcs.2010.06.002

    Article  CAS  Google Scholar 

  20. Brandolini A, Hidalgo A, Gabriele S, Heun M (2015) Chemical composition of wild and feral diploid wheats and their bearing on domesticated wheats. J Cereal Sci 63:122–127. https://doi.org/10.1016/j.jcs.2015.03.005

    Article  CAS  Google Scholar 

  21. Gutiérrez A, Infantes M, Pascual G, Zamora J (2016) Evaluación de los factores en el desamargado de tarwi (Lupinus mutabilis Sweet) [Assessment of the factors in the debittering of tarwi (Lupinus mutabilis Sweet)]. Agroindustrial Sci 6:145–149 https://revistas.unitru.edu.pe/index.php/agroindscience/article/view/1139

    Article  Google Scholar 

  22. Eastwood RJ, Hugues CE (2008) Origins of domestication of Lupinus mutabilis in the Andes. In: Palta JA, Berger JB (eds) Lupins for Health and Wealth (pp. 373–379) Proceedings of the 12th International Lupin Conference, 14–18 Sept. 2008, Fremantle, Western Australia. International Lupin Association. Canterbury, New Zealand

    Google Scholar 

  23. Mohamed AA, Rayas-Duarte P (1995) Composition of Lupinus albus. Cereal Chem 72:643–647. cerealsgrains.org/publications/cc/backissues/1995/documents/72_643.pdf

  24. Yorgancilar M, Bilgiçli N (2014) Chemical and nutritional changes in bitter and sweet lupin seeds (Lupinus albus L.) during bulgur production. J Food Sci Technol 51:1384–1389. https://doi.org/10.1007/s13197-012-0640-0

    Article  CAS  PubMed  Google Scholar 

  25. Schoeneberger H, Gross R, Cremer HD, Elmadfa I (1982) Composition and protein quality of Lupinus mutabilis. J Nutr 112:70–76. https://doi.org/10.1093/jn/112.1.70

    Article  CAS  PubMed  Google Scholar 

  26. Carvajal-Larenas FE, Linnemann AR, Nout MJR, Koziol M, van Boekel MAJS (2016) Lupinus mutabilis: composition, uses, toxicology, and debittering. Crit Rev Food Sci Nutr 56:1454–1487. https://doi.org/10.1080/10408398.2013.772089

    Article  CAS  PubMed  Google Scholar 

  27. Musco N, Cutrignelli MI, Calabrò S, Tudisco R, Infascelli F, Grazioli R, Lo Presti V, Gresta F, Chiofalo B (2017) Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds. J Anim Physiol Anim Nutr 101:1227–1241. https://doi.org/10.1111/jpn.12643

  28. Sujak A, Kotlarz A, Strobel W (2006) Compositional and nutritional evaluation of several lupin seeds. Food Chem 98:711–719. https://doi.org/10.1016/j.foodchem.2005.06.036

    Article  CAS  Google Scholar 

  29. Erbaş M (2010) The effects of different debittering methods on the production of lupin bean snack from bitter Lupinus albus L. seeds. J Food Qual 33:742–757. https://doi.org/10.1111/j.1745-4557.2010.00347.x

    Article  CAS  Google Scholar 

  30. Hidalgo A, Brandolini A, Pompei C (2010) Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours. Food Chem 121:746–751. https://doi.org/10.1016/j.foodchem.2010.01.034

    Article  CAS  Google Scholar 

  31. Brandolini A, Lucisano M, Mariotti M, Hidalgo A (2018) A study on the quality of einkorn (Triticum monococcum L. ssp. monococcum) pasta. J Cereal Sci 82:57–64. https://doi.org/10.1016/j.jcs.2018.05.010

    Article  CAS  Google Scholar 

  32. Munné-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748. https://doi.org/10.1016/j.jplph.2005.04.022

Download references

Funding

Fondo Nacional de Desarrollo Científico y Tecnológico, Proyecto 022–2015-INIA-PNIA/UPMS/IE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Brandolini.

Ethics declarations

Conflict of Interest

The Authors declare no conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 13 kb)

ESM 2

(DOCX 17 kb)

ESM 3

(DOCX 184 kb)

ESM 4

(DOCX 14 kb)

ESM 5

(DOCX 47 kb)

ESM 6

(DOCX 14 kb)

ESM 7

(DOCX 1797 kb)

ESM 8

(DOCX 17 kb)

ESM 9

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berru, L.B., Glorio-Paulet, P., Basso, C. et al. Chemical Composition, Tocopherol and Carotenoid Content of Seeds from Different Andean Lupin (Lupinus mutabilis) Ecotypes. Plant Foods Hum Nutr 76, 98–104 (2021). https://doi.org/10.1007/s11130-021-00880-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00880-0

Keywords

Navigation