Skip to main content
Log in

A review on trends in microencapsulation of bioactive compounds: coating materials, design, and applications

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Encapsulation of bioactive compound has some encountered issues associated particularly to their mode of fabrication, design, and biodegradability. For these reasons, selecting appropriate coating materials like hydroxyl cellulose has several advantages such as modification of moisture, crystal growth, and viscosity. In addition, starches, maltodextrins, whey proteins, chitosan, zein/pectin, and alginates are considered an important coating materials used during microencapsulation processing steps. Thus, the variability in the hydrophilicity, lipophilicity and chargeability levels of those coating materials along with the encapsulation is considered among the molecular aspects in forming genius emulsion vesicles, microgels, solid lipid nanoparticles, liposomes, or core shell nanoparticles. These encapsulation designs are capable in promoting variable physicochemical and therapeutic features such as intra-atomic dimensions, dispersed volumes, release kinetics, and stability levels. Under these desired structural and molecular parameters, in addition to proper optimization of processing conditions, perfect microcarriers and microcapsules could be achieved. Moreover, appropriate control of copolymerization and crystallization of the coating materials with some antagonistic pharmaceutical drugs needs special emphasize. In general, this manuscript reviews various important aspects of structured materials used along with their production and potential uses for enhancing targeted delivery and release of therapeutic foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Abd El-Salam MH, El-Shibiny S (2012) Formation and potential uses of milk proteins as nanodelivery vehicles for nutraceuticals: a review. Int J Dairy Technol 65:13–21

    Article  CAS  Google Scholar 

  2. Abdul Khalil HPS, Davoudpour Y, Nazrul Islam M, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  PubMed  Google Scholar 

  3. Aboudzadeh MA, Mehravar E, Fernandez M, Lezama L, Tomovska R (2018) Low-energy encapsulation of α-Tocopherol using fully food grade oil-in-water microemulsions. ACS Omega 3:10999–11008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Acevedo NC, Block JM, Marangoni AG (2012) Critical laminar shear-temperature effects on the nano- and mesoscale structure of a model fat and its relationship to oil binding and rheological properties. Faraday Discuss 158:171–194

    Article  CAS  PubMed  Google Scholar 

  5. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15

    Article  CAS  Google Scholar 

  6. Akanda MH, Rai R, Slipper IJ, Chowdhry BZ, Lamprou D, Getti G, Douroumis D (2015) Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Inter J Pharm 493(1–2):161–171

    Article  CAS  Google Scholar 

  7. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation. Bioch Biophys Acta 1066(1):29–36

    Article  CAS  Google Scholar 

  8. Allen C, Dos Santos N, Gallagher R, Chiu GN, Shu Y, Li WM, Johnstone SA, Janoff AS, Mayer LD, Webb MS, Bally MB (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 22:225–250

    Article  CAS  PubMed  Google Scholar 

  9. Angelov B, Angelova A, Mutafchiev R, Lesieur S, Vainio U, Garamus VM, Jensena GV, Pedersen JS (2011) SAXS investigation of acubic to a sponge (L3) phase transition in self-assembledlipidnanocarriers. Phys Chem Chem Phys 13:3073–3081

    Article  CAS  PubMed  Google Scholar 

  10. Angelov B, Angelova A, Ollivon M, Bourgaux C, Campitelli A (2003) Diamond-type lipid cubic phase with large water channels. J Am Chem Soci 125:7188–7189

    Article  CAS  Google Scholar 

  11. Angelova A, Angelov B, Mutafchieva R, Lesieur S, Couvreur P (2011) Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc Chem Res 44(2):147–156

    Article  CAS  PubMed  Google Scholar 

  12. Awulachew MT (2021) A systematic review of encapsulation and control release technology in food application. J Agric Sc Food Technol 7(3):292–296

    Google Scholar 

  13. Azizi M, Kierulf A, Lee MC, Abbaspourrad AI (2018) improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. Food Chem 246:448–456

    Article  CAS  PubMed  Google Scholar 

  14. Bahari SA, Hamishehkar H (2016) The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv Pharm Bull 6(2):143–151

    Article  CAS  Google Scholar 

  15. Barratt GM (2000) Therapeutic applications of colloidal drug carriers. Pharmaceut Sci Tech Today 3:163–171

    Article  CAS  Google Scholar 

  16. Beck C, Dalvi SV, Dave RN (2010) Controlled liquid antisolvent precipitation using a rapid mixing device. Chem Eng Sci 65:5669–5675

    Article  CAS  Google Scholar 

  17. Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lacticacid). J Appl Polym Sci 126:448–457

    Article  Google Scholar 

  18. Cegla UH (1988) Long-term therapy over 2 years with ambroxol (Mucosolvan) retard capsules in patients with chronic broncits. Results of double blind study of 180 patients. Prax Klin Pneumol 42:715–721

    CAS  PubMed  Google Scholar 

  19. Chu B-S, Ichikawa S, Kanafusa S, Nakajima M (2007) Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. J Am Oil Chem Soc 84(11):1053–1062

    Article  CAS  Google Scholar 

  20. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134

    Article  CAS  PubMed  Google Scholar 

  21. Dai L, Zhou H, Wei Y, Gao Y, McClements DJ (2019) Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method. Food Hydrocolloids 93:342–350

    Article  CAS  Google Scholar 

  22. Danaei M, Dehghankhold M, Ataei S, Davarani FH, Javanmard R, Dokhani R, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarriers systems. Pharmaceutics 10(2):57

    Article  PubMed  PubMed Central  Google Scholar 

  23. Demirgöz D, Garg A, Kokkoli E (2008) PR_b-targeted PEGylated liposomes for prostate cancer therapy. Langmuir 24:13518–13524

    Article  PubMed  Google Scholar 

  24. Dingler A, Blum RP, Niehus H, Müller RH, Gohla S (1999) Solid lipid nanoparticles (SLN™/Lipopearls™) –– a pharmaceutical and cosmeticcarrier for the application of vitamin E in dermal products. J Microencapsul 16:751–767

    Article  CAS  PubMed  Google Scholar 

  25. Fang Z, Bhandari B (2010) Encapsulation of polyphenols− a review. Trends Food Sci Technol 21(10):510–523

    Article  CAS  Google Scholar 

  26. Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    Article  CAS  Google Scholar 

  27. Fessi H, Piusieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Inter J Pharm 55:R1–R4

    Article  CAS  Google Scholar 

  28. Fox CB (2009) Squelene emulsion for parenteral vaccines and drug delivery. Molecules 14:3286–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fricker G, Knomp T, Wendel A, Blume A, Zirkel J, Rebmann H, Setzer C, Quinkert RO, Martin F, Müller-Goymann C (2010) Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res 27:1469–1486

    Article  CAS  PubMed  Google Scholar 

  30. Galeb HA, Salimon J, Eid EEM, Nacer NE, Saari N, Saadi S (2012) The impact of single and double hydrogen bonds on crystallization and melting regimes of Ajwa and Barni lipids. Food Res Int 48:657–666

    Article  CAS  Google Scholar 

  31. Garg A, Tisdale AW, Haidari E, Kokkoli E (2009) Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm 366:201–210

    Article  CAS  PubMed  Google Scholar 

  32. Ghasemiyeh P, Mohammadi-Samani S (2019) Hydrogels as drug delivery systems. Pros and Cons Trends Pharm Sci 5(1):7–24

    CAS  Google Scholar 

  33. Gonnet M, Lethuaut L, Boury F (2010) New trends in encapsulation of liposoluble vitamins. J Control Release 146:276–290

    Article  CAS  PubMed  Google Scholar 

  34. Goula AM, Adamopoulos KG (2012) A method for pomegranate seed application in food industries: seed oil encapsulation. Food Bioprod Process 90:639–652

    Article  CAS  Google Scholar 

  35. Gruner SM (1989) Stability of lyotropic phases withcurved interfaces. J Phys Chem 93:7562–7570

    Article  CAS  Google Scholar 

  36. Gunasekaran S, Rajalakshmi K, Kumaresan S (2013) Vibrational analysis, electronic structure and nonlinear optical properties of levofloxacin by density functional theory. Spectrochim Acta A Mol Biomol Spectrosc 112:351–363

    Article  CAS  PubMed  Google Scholar 

  37. Gupta B, Yong CS, Kim JO (2017) Solid matrix-based lipid nanoplatforms as carriers for combinational the therapeutic in cancer. J Pharm Investig 47(6):461–473

    Article  CAS  Google Scholar 

  38. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: New applications and optimizationof their preparation. Curr Opin Colloid Interface Sci 13(4):245–251

    Article  Google Scholar 

  39. Haidar ZS, Hamdy RC, Tabrizian T (2008) Protein release kinetics for coreeshell hybrid nanoparticles based on the layer by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29:1207–1215

    Article  CAS  PubMed  Google Scholar 

  40. Han C, Li Y, Sun M, Liu C, Ma X, Yang X, Yuan Y, Pan W (2014) Small peptides-modified nanostructured lipid carriers distribution and targeting to EGFR-over expressing tumor in vivo. Artif Cell Nanomed Biotechnol 42:161–166

    Article  CAS  Google Scholar 

  41. Homayouni A, Azizi A, Ehsani MR, Yarmand MS, Razavi SH (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of symbiotic ice cream. Food Chem 111:50–55

    Article  CAS  Google Scholar 

  42. Hu B, Ma F, Yang Y, Xie M, Zhang C, Xu Y, Zeng X (2016) Antioxidant nanocomplexes for delivery of epigallocatechin-3-gallate. J Agric Food Chem 64:3422–3429

    Article  CAS  PubMed  Google Scholar 

  43. Huang X, Dai Y, Cai J, Zhong J, Xiao H, McClements DJ, Hu K (2017) Resveratrol encapsulation in core-shell biopolymer nanoparticles: impact on antioxidant and anticancer activities. Food Hydrocolloids 64:157–165

    Article  CAS  Google Scholar 

  44. Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR (2016) Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloid Surf B 143:168–176

    Article  CAS  Google Scholar 

  45. Jain A, Mehra KN, Nahar M, Jain NK (2013) Topical delivery of enoxaparin using nanostructured lipid carrier. J Microencapsul. https://doi.org/10.3109/02652048.2013.778908

    Article  PubMed  Google Scholar 

  46. Jassal M, Bishai WR (2009) Extensively drug-resistant tuberculosis. Lancet Infect Dis 9:19–30

    Article  PubMed  Google Scholar 

  47. Jenning V, Gohla S (2001) Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsul 18:149–158

    Article  CAS  PubMed  Google Scholar 

  48. Jonoobi M, Harun J, Mathew AP, Hussein B, Oksman MZK (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307

    Article  CAS  Google Scholar 

  49. Joshi BP, Mittal MG, Kar S, Pola JK, Golakoti NR, Nanubolu JB, Rajesh BD, Kumar SS, Sahal D (2018) Synthesis, mechanistic and synergy studies of diarylidene cyclohexanone derivatives as new antiplasmodial pharmacophores. Med Chem Res. https://doi.org/10.1007/s00044-018-2237-2

    Article  Google Scholar 

  50. Katouzian I, Jafari SM (2016) Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol 53:34–48

    Article  CAS  Google Scholar 

  51. Kaur M, Malik B, Garg T, Rath G, Goyal AK (2014) Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv 22:328–334

    Article  PubMed  Google Scholar 

  52. Klettenhammer S, Ferrentino G, Morozova K, Scampicchio M (2020) Novel technologies based on supercritical fluids for the encapsulation of food grade bioactive compounds. Foods 9:1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Komaiko J, Sastrosubroto A, McClements DJ (2016) Encapsulation of omega-3 fatty acids in nanoemulsion based delivery systems fabricated from natural emulsifiers: sunflower phospholipids. Food Chem 203:331–339

    Article  CAS  PubMed  Google Scholar 

  54. Kulkarni CV (2012) Lipid crystallization from assembly to hierarchical and biological ordering. Nanoscale 4:5779–5791

    Article  CAS  PubMed  Google Scholar 

  55. Larsson KJ (1989) Cubic lipid-water phases: structures and biomembrane aspects. Phys Chem 93:7304

    Article  CAS  Google Scholar 

  56. Leong TSH, Wooster TJ, Kentish SE, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16(6):721–727

    Article  CAS  PubMed  Google Scholar 

  57. Lević S, Rac V, Manojlović V, Rakić V, Bugarski B, Flock T, Krzyczmonik KE, Nedović V (2011) Limonene encapsulation in alginate/poly (vinyl alcohol). Proced Food Sci 1:1816–1820

    Article  Google Scholar 

  58. Lim SJ, Kim CK (2002) Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm 243(1):135–146

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, He Q, Wu M (2015) Levofloxacin-induced crystal nephropathy. Nephrology (Carlton) 20:437–438

    Article  PubMed  Google Scholar 

  60. Ly MH, Aguedo M, Goudot S, Le ML, Cayot P, Teixeira JA, Le TM, Belin JM, Waché Y (2008) Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability. Food Hydrocolloids 22:742–751

    Article  CAS  Google Scholar 

  61. Mamidi RN, Weng S, Stellar S, Wang C, Yu N, Huang T, Tonelli AP, Kelley MF, Angiuoli A, Fung MC (2010) Pharmacokinetics, efficacy and toxicity of different pegylated liposomal doxorubicin formulations in preclinical models: is a conventional bioequivalence approach sufficient to ensure therapeutic equivalence of pegylated liposomal doxorubicin products? Cancer Chemother Pharmacol 66:1173–1184

    Article  CAS  PubMed  Google Scholar 

  62. Marangoni AG, Acevedo N, Maleky F, Peyronel ECF, Mazzanti G, Quinnc B, Pink D (2012) Structure and functionality of edible fats. Soft Matter 8:1275–2130

    Article  CAS  Google Scholar 

  63. Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25

    Article  Google Scholar 

  64. McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive componentsinnutraceuticals and functional foods. Crit Rev Food Sci Nutr 49(6):577–606

    Article  CAS  PubMed  Google Scholar 

  65. Mehner W, Mader K (2001) Solid lipid nanoparticles: production, characterization and application. Adv Drug Deliv Res 47:165–169

    Article  Google Scholar 

  66. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Int J Pharm Sci 71:349–358

    CAS  Google Scholar 

  67. Muller RH, MaaBen S, Weyhers H, Specht F, Lucks JS (1996) Cytotoxicity of magnetite-loaded polylactide, poly-lactide/glycolide particles and solid lipid nanoparticles. Int J Pharm 138(1):85–94

    Article  Google Scholar 

  68. Nahak P, Karmakar G, Chettri P, Roy B, Guha P, Besra SE, Soren A, Bykov AG, Akentiev AV, Noskov BA, Panda AK (2016) Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: an attempt to enhance anticancer activity. Langmuir 32:9816–9825

    Article  CAS  PubMed  Google Scholar 

  69. Nakagawa K, Nishimoto N (2011) Cryotropic gel formation for food nutrients encapsulation-A controllable processing of hydrogel by freezing. Proced Food Sci 1:1968–1972

    Article  CAS  Google Scholar 

  70. Narayanan S, Mony U, Vijaykumar DK, Koyakutty M, Paul-Prasanth B, Menon D (2015) Sequential release of Epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine 11:1399–1406

    Article  CAS  PubMed  Google Scholar 

  71. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Proced Food Sci 1:1806–1815

    Article  CAS  Google Scholar 

  72. Neupane YR, Sabir MD, Ahmed N, Ali M, Kohli K (2013) Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology 24(41):415102. https://doi.org/10.1088/0957-4484/24/41/415102

    Article  CAS  PubMed  Google Scholar 

  73. Niculae G, Lacatusu I, Badea N, Stan R, Vasile BS, Meghea A (2014) Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations. Photochem Photobiol Sci 13(4):703–716. https://doi.org/10.1039/c3pp50290b

    Article  CAS  PubMed  Google Scholar 

  74. North DS, Fish DN, Redington JJ (1998) Levofloxacin, a second-generation fluoroquinolone. Pharmacotherapy 18(5):915–935

    CAS  PubMed  Google Scholar 

  75. Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K, Sonje A (2012) Solid lipid based nanocarriers: an overview. Acta Pharm 62:433–472

    Article  CAS  PubMed  Google Scholar 

  76. Patterson S, Wyllie S (2014) Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol 30:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Peters R, Brandhoff P, Weigel S, Marvin H, Bouwmeester H, Aschberger K, Rauscher H, Amenta V, Arena M, Moniz FB, Gottardo S, Mech A (2014) Inventory of nanotechnology applications in the agricultural, feed and food sector. Eur Food Saf Auth EFSA. https://doi.org/10.2903/sp.efsa.2014.EN-621

    Article  Google Scholar 

  78. Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Müller RH, Ehlers S (2000) Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 45:77–83

    Article  CAS  PubMed  Google Scholar 

  79. Polowsky PJ, Janaswamy S (2015) Hydrocolloid-based nutraceutical delivery systems: effect of counter-ions on the encapsulation and release. Food Hydrocolloids 43:658–663

    Article  CAS  PubMed  Google Scholar 

  80. Puligundla P, Mok C, Ko S, Liang J, Recharla N (2017) Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols. J Funct Foods 34:139–151

    Article  CAS  Google Scholar 

  81. Pérez-Masiá R, López-Nicolás R, Periago MJ, Ros G, Lagaron JM, López-Rubio A (2015) Encapsulation of folic acid in food hydrocolloids through 1 nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133

    Article  PubMed  Google Scholar 

  82. Radtke M, Müller RH (2001) Nanostructured lipid drug carriers. New Drugs 2:48–52

    Google Scholar 

  83. Rao J, McClements DJ (2010) Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J Agric Food Chem 58(11):7059–7066

    Article  CAS  PubMed  Google Scholar 

  84. Rezaei A, Nasirpour A, Fathi M (2014) Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compr Rev Food Sci Food Saf 14:269–284

    Article  Google Scholar 

  85. Rodriguez K, Sundberg J, Gatenholm P, Renneckar S (2014) Electrospun nanofibrous cellulose scaffolds with controlled microarchitecture. Carbohydr Polym 100:143–149

    Article  CAS  PubMed  Google Scholar 

  86. Saadi S, Ariffin AA, Ghazali HM, Abdulkarim SM, Boo HC, Miskandar MS (2012) Crystallisation regime of w/o emulsion [e.g. multipurpose margarine] models during storage. Food Chem 133:1485–1493

    Article  CAS  Google Scholar 

  87. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Abdulkarim SM, Boo HC (2011) Effect of blending and emulsification on thermal behavior, solid fat content, and microstructure properties of palm oil-based margarine fats. J Food Sci 76(1):C21–C30

    Article  CAS  PubMed  Google Scholar 

  88. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Boo CH, Abdulkarim SM (2012) Application of differential scanning calorimetry (DSC), HPLC and pNMR for interpretation primary crystallisation caused by combined low and high melting TAGs. Food Chem 132:603–612

    Article  CAS  PubMed  Google Scholar 

  89. Saadi S, Saari N, Abdulkarim SM, Ghazali HM, Anwar F (2018) Smart electrical bi-layers lipopeptides: Novel peptidic chains like zigzag map esterified with phospho-glyceride as mono-layer moieties capable in forming a meso-sphere-envelop with scaffold ability to cellular impurities*. J Control Release 274:93–101

    Article  CAS  PubMed  Google Scholar 

  90. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM (2015) Recent advances in food biopeptides: production, biological functionalities and therapeutic applications. Biotechnol Adv 33(1):80–116

    Article  CAS  PubMed  Google Scholar 

  91. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M (2016) Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 39:1181–1192

    Article  CAS  PubMed  Google Scholar 

  92. Salem HF, Abdelrahim ME, Eid KA, Sharaf MA (2011) Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler. Int J Nanomedicine 6:311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose- based hydrogels : design and applications. Materials 2(2):353–373

    Article  CAS  PubMed Central  Google Scholar 

  94. Dos Santos N, Allen C, Doppen A-M, Anantha M, Cox KA, Gallagher RC, Karlsson G, Edwards K, Kenner G, Samuels L, Webb MS, Bally MB (2007) Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 1768:1367–1377

    Article  PubMed  Google Scholar 

  95. Santos-Magalhães NS, Furtado Mosqueira VC (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62:560–575

    Article  PubMed  Google Scholar 

  96. Schmidt-Krey I, Lundqvist G, Morgenstern R, Hebert H (1998) Parameters for the two dimentional crystallization of the membrane protein microsomal glutathione transferase. J Struct Biol 123(2):87–96

    Article  CAS  PubMed  Google Scholar 

  97. Schwarz US, Gompper G (2000) Stability of inverse bicontiniouscubic phases in lipid- water mixtures. Phys Rev Lett 85:1472–1475

    Article  CAS  PubMed  Google Scholar 

  98. Severino P, Andreani T, Macedo AS, Fangueiro JF, Santan MHA, Silva AM, Souto EB (2012) Current state of art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J drug deliv. https://doi.org/10.1155/2012/750891

    Article  PubMed  Google Scholar 

  99. Shah B, Davidson PM, Zhong Q (2012) Nanocapsular dispersion of thymol for enhanceddispersibility and increasedantimicrobialeffectiveness against Escherichia coli O157:H7 and Listeria monocytogenesin model food systems. Appl Environ Microbiol 78(23):8448–8453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shen S, Wang S, Zheng R, Zhu X, Jiang X, Fu D, Yang W (2015) Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39:67–74

    Article  CAS  PubMed  Google Scholar 

  101. Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol 5:854–867

    Article  CAS  Google Scholar 

  102. Singh J, Garg T, Rath G, Goyal AK (2016) Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – a critical review. Drug Deliv 23(5):1676–1698

    Article  CAS  PubMed  Google Scholar 

  103. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569

    Article  CAS  Google Scholar 

  104. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108(109):303–318

    Article  PubMed  Google Scholar 

  105. Tavares GM, Croguennec T, Carvalho AF, Bouhallab S (2014) Milk proteins as encapsulation devices and delivery vehicles: applications and trends. Trends Food Sci Technol 37:5–20

    Article  CAS  Google Scholar 

  106. Thorat AA, Dalvi SV (2012) Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem Eng J 181(182):1–34

    Article  Google Scholar 

  107. Uner M, Wissing SA, Yener G, Muller RH (2005) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for application of ascorbyl palmitate. Die-Pharmazie - Inter J Pharm Sci 60(8):577–582

    CAS  Google Scholar 

  108. Velikov KP, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4(10):1964–1980

    Article  CAS  Google Scholar 

  109. Vollooran JJ, Bolisetty S, Mezzenga R (2011) Macroscopic alignment of lyotropic liquid crystals using magnetic nanoparticles. Adv Mater 23(34):3932–3937

    Article  Google Scholar 

  110. Wen P, Zong M-H, Linhardt RJ, Feng K, Wu H (2017) Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol 70:56–68

    Article  CAS  Google Scholar 

  111. Winuprasith T, Khomein P, Mitbumrung W, Suphantharika M, Nitithamyong A, McClements DJ (2018) Encapsulation of vitamin D3 in Pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocolloids 83:153–164

    Article  CAS  Google Scholar 

  112. Wissing SA, Lippacher A, Muller RH (2001) Investigations on the occlusive properties of solid lipidnanoparticles (SLN). J Cosmet Sci 52(5):313–324

    CAS  PubMed  Google Scholar 

  113. Wissing SA, Müller RH (2001) A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int J Cosmet Sci 23:233–243

    Article  CAS  PubMed  Google Scholar 

  114. Woodle MC (1995) Sterically stabilized liposome therapeutics. Adv Drug Deliv Rev 16:249–265

    Article  CAS  Google Scholar 

  115. Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24(22):12758–12765

    Article  CAS  PubMed  Google Scholar 

  116. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68:701–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zambrano-Zaragoza ML, González-Reza R, Mendoza-Muñoz N, Miranda-Linares V, Bernal-Couoh TF, Mendoza-Elvira S, Quintanar-Guerrero D (2018) Nanosystems in edible coatings: a novel strategy for food preservation. Int J Mol Sci 19:705. https://doi.org/10.3390/ijms19030705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zardini A, Mohebbi M, Farhoosh R, Bolurian S (2018) Production and characterization of nanostructured lipidcarriers and solid lipid nanoparticles containing lycopene for food fortification. J Food Sci Technol 55(1):287–298

    Article  Google Scholar 

  119. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly (vinylalcohol) mats. Eur Polym J 41:423–432

    Article  CAS  Google Scholar 

  120. Zhang Z, Zhang R, McClements DJ (2016) Encapsulation of ß-carotene in alginate- based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids 61:1–10

    Article  Google Scholar 

  121. Zhang Z, Zhang R, Zou L, McClements DJ (2016) Protein encapsulation in alginate hydrogel beads: effect of pH on microgel stability, protein retention and protein release. Food Hydrocolloids 58:308–315

    Article  CAS  Google Scholar 

  122. Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, Tang ZX (2011) Preparation and application of chitosannanoparticles and nanofibers. Brazilian. J Chem Eng 28:353–362

    CAS  Google Scholar 

  123. Zhu J, Zhuang P, Luan L, Sun Q, Cao F (2015) Preparation and characterization of novelnanocarrierscontaining krill oil for food application. J Funct Foods. https://doi.org/10.1016/j.jff.2015.06.017

    Article  Google Scholar 

  124. Zirak MB, Pezeshki A (2015) Effect of surfactant concentration on the particlesize, stability and Ppotentialzeta of beta carotenenano lipid carrier. Int J Curr Microbiol Appl Sci 4(9):924–932

    CAS  Google Scholar 

  125. Üner M (2006) Preparation, characterization and physicochemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 61(5):375–386

    PubMed  Google Scholar 

  126. Üner M, Karaman EF, Aydoğmu ŞZ (2014) Solid lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: physicochemical stability and drug penetration through rat skin. Trop J Pharm Res 13(5):653–660

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the INATAA Mentouri Frere University of Algeria, Universiti Putra Malaysia UPM and Sargodha University of Pakistan for microencapsulation design and application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Saadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Compliance with ethics requirements

The authors declare that the reported work does not involve human participants and/or animal studies that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadi, S., Nacer, N.E., Chenaker, H. et al. A review on trends in microencapsulation of bioactive compounds: coating materials, design, and applications. Eur Food Res Technol 249, 3123–3139 (2023). https://doi.org/10.1007/s00217-023-04354-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04354-2

Keywords

Navigation