Skip to main content
Log in

Extracts from “Mother of thousands” (Kalanchoe daigremontiana) are potent compounds to improve vegetable oil stability during storage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Vegetable oils are susceptible to degradative reactions; hence, some resources, such as natural antioxidant extracts, are used to increase their stability. The effects of Kalanchoe daigremontiana (KD) on food systems have not yet been documented; however, it is a source of bioactive compounds and possesses numerous qualities. This study aimed to evaluate the phenolic profile in the aqueous (KdAqE) and ethanolic (KdEThE) extracts of KD, along with their effects on the quality indicators of soybean oil stored under accelerated storage conditions. Extracts were prepared from the dried leaves of KD and concentrated at 31.5 mg/mL (KdEthE) and 70 mg/mL (KdAqE). Phenolic compounds were identified by HPLC–DAD. By Schaal Oven Test, soybean oil was stored (60 °C/21 days) in a total of five groups: control (Ctrl) and oil extracts in two concentrations (250 and 500 µg/mL). Every seven days of storage, tests for peroxidation, acidity, refraction, smoke point, and colorimetric indices were conducted. Chrysin and quercetin were the most prevalent phenolics in the extracts. KdEthE demonstrated protective action against peroxidation and hydrolytic rancidity. KdAqE demonstrated an effect in increasing the thermal resistance of the oil. KD extracts showed potential as a bioactive compound for the conservation or stability of lipid foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Abbreviations

KD:

Kalanchoe daigremontiana

KdAqE:

Aqueous extract of the KD

KdEThE:

Ethanolic extract of the KD

HPLC–DAD:

High-performance liquid chromatography equipped with a diode array detector (DAD)

KdEthE250 :

Soy oil with ethanolic extract of the KD at 250 µg/mL

KdEthE500 :

Soy oil with ethanolic extract of the KD at 500 µg/mL

KdAqE250 :

Soy oil with aqueous extract of the KD at 250 µg/mL

KdAqE500 :

Soy oil with aqueous extract of the KD at 500 µg/mL

PI:

Peroxidation index

AI:

Acid index

RI:

Refractive index

SP:

Smoke point

References

  1. Food Ingredients Brasil Dossiê dos óleos. Fib (2014) 31:42–56. Retrieved from:  https://revista-fi.com/upload_arquivos/201606/2016060563192001464890846.pdf

  2. United States Department of Agriculture. Oilseeds: World Markets and Trade (2021) Retrieved from: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf

  3. Karp SG, Vandenberghe LPS, Pagnoncelli MGB, Vásquez ZS, Martínez-Burgos WJ, Prado F, Herrmann LW, Letti LAJ, Mezzalira F, Soccol CR (2022) Biomass Biofuels Biochem 189:216

    Google Scholar 

  4. Umeda WM, Jorge N (2021) Food Control 127:108130

    Article  CAS  Google Scholar 

  5. Chen L, Zhang L, Li Y, Zhang N, Gao Y, Yu X (2021) Food Chem 364:130451

    Article  CAS  PubMed  Google Scholar 

  6. Castro LS (2016) Rev Contemp de Eco e Gestão 14:79

    Google Scholar 

  7. Wanasundara UN, Shahidi F (1998) J Food Lipids 5:29

    Article  CAS  Google Scholar 

  8. Ng S, Choong Y, Tan C, Long K, Nyam K (2014) Food Sci Technol 58:2

    Google Scholar 

  9. Kmiecik D, Gramza-Michałowska A, Korczak J (2014) Nauka Przyr Technol 8:54

    Google Scholar 

  10. Olajide TM, Liu T, Liu H, Weng X (2022) Food Chem 315:126197

    Article  Google Scholar 

  11. Stefanowicz-Hajduk J, Asztemborska M, Krauze-Baranowska M, Godlewska S, Gucwa M, Moniuszko-Szajwaj B, Stochmal A, Ochocka JR (2020) Plant Med 86:239

    Article  CAS  Google Scholar 

  12. Quintero EJ, León EGD, Estela, Morán-Pinzón J, Mero A, León E, Cano LP (2021) EJMP. 32:45–54

  13. Akentieva NP, Shushanov SS, Gizatullin AR, Prikhodchenko TR, Shkondina NL, D’agaro E (2021) Biointerface Res Appl Chem 11:5

    Google Scholar 

  14. Báez M, Torres EL, Gruszycki AE, Alba DA, Valenzuela GM, Gruszycki MR (2021) Rev Colomb Cienc Quím Farm 50:86–89

  15. Madariaga-Navarrete A, Aquino-Torres E, Cariño-Cortés R, Villagómez-Ibarra R, Ocampo-López J, Sharma A, Hernández-Fuentes AD (2021) IJPER 55:2

    Article  Google Scholar 

  16. Kolodziejczyk-Czepas J, Pasiński B, Ponczek MB, Moniuszko-Szajwaj B, Kowalczyk M, Pecio L, Nowak P, Stochmal A (2018) Int J Biol Macromol 120:1591

    Article  CAS  PubMed  Google Scholar 

  17. Bogucka-Kocka A, Zidorn C, Kasprzycka M, Szymczak G, Szewczyk K (2018) Saudi J Biol Sci 25:622

    Article  CAS  PubMed  Google Scholar 

  18. Madariaga-Navarrete A, Aquino-Torres E, Cariño-Cortés R, Villagómez-Ibarra R, Ocampo-López J, Sharma A, Hernández-Fuentes AD (2021) IJPER 55:2

  19. De Magalhães BEA, Santana DA, Silva IMJ, Minho LAC, Gomes MA, Almeida JRGS, Lopes dos Santos WN (2020) Microchem J 155:104683

    Article  Google Scholar 

  20. Elizondo-Luévano JH, Pérez-Narváez OA, Sánchez-García E, Castro-Ríos R, Hernández-García R, Chávez-Montes MEA (2021) Iran J Parasitol 16:394

    PubMed  PubMed Central  Google Scholar 

  21. American Oil Chemists' Society (2017) Smoke, Flash and Fire Points, Cleveland Open Cup Method. 9a-48 (2017)

  22. Pathare PB, Opara UL, Al-Said FAC (2013) Food Bioproc Technol 6:36

    Article  CAS  Google Scholar 

  23. Ürményi FGG, Saraiva GDN, Casanova LM, Matos ADS, Camargo LMD, Romanos MTV, Costa SS (2016) Chem Biodivers 13:1707

    Article  PubMed  Google Scholar 

  24. Ferreira ACB, Bogiani BC, Sofiatti V, Lamas FM (2016) Comunicado Técnico. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/157493/1/Sistemas-de-cultivo-de-plantas-de-cobertura.pdf

  25. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham-Ul-Haq I, Shahbaz M, Qaisrani TB, Shah ZA, Plygun S, Heydari M (2019) Life Sci 235:116797

    Article  CAS  PubMed  Google Scholar 

  26. Ting P, Srinuanchai W, Suttisansanee U, Tuntipopipat S, Charoenkiatkul S, Praengam K, Chantong B, Temviriyanukul P, Nuchuchua O (2021) Foods 10:1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Somaya MZ, Moawed FSM, Elmarkaby SM (2017) J Photochem Photobiol B. 175:149–155

  28. Boothapandi M, Ravichandran R (2018) Eur J Integr 24:71

    Article  Google Scholar 

  29. Marunaka Y (2017) Ann N Y Acad Sci 1398:142

    Article  CAS  PubMed  Google Scholar 

  30. Deng Q, Li XX, Fang Y, Chen X, Xue J (2020). Evid Based Complement Alternat Med. https://doi.org/10.1155/2020/5926381

    Article  PubMed  PubMed Central  Google Scholar 

  31. Soofiyani SR, Hosseini K, Forouhandeh H, Ghasemnejad T, Tarhriz V, Asgharian P, Reiner Ž, Sharifi-Rad J, Cho WC (2021). Oxid Med Cell Longev. https://doi.org/10.1155/2021/3157867

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pei JP, Velu M, Zareian Z, Feng A, VijayalakshmI A (2021) Front Nutr 8:788929

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Mendoza MDP, Espinosa-Pardo FA, Savoire R, Harscoat-Schiavo C, Cansell M, Subra-Paternault P (2021) Food Chem 341:128234

    Article  CAS  PubMed  Google Scholar 

  34. Brasil (2006) Ministério Da Agricultura, Pecuária E Abastecimento. Instrução Normativa nº 49, 2006. Regulamento técnico de identidade e qualidade de óleos vegetais refinados. Diário oficial da União, Brasilia

  35. Oliveira C, Cardoso PB, Meier MAR, Sayer C, Araújo PHH (2014) Anais do Congresso Brasileiro de Engenharia Química

  36. Jorge N, Soares BBP, Lunardi VM, Malacrida CR (2005) Quim Nova 28:6

    Article  Google Scholar 

  37. Wu G, Han S, Zhang Y, Liu T, Karrar E, Jin Q, Zhang H, Wang X (2022) Food Chem 372:131143

    Article  CAS  PubMed  Google Scholar 

  38. Ng SK, Choong YH, Tan CP, Long K, Nyam KL (2014) Food Sci Technol 58:2

  39. Wu G, Han S, Zhang Y, Liu T, Karrar E, Jin Q, Zhang H, Wang X (2022) Food Chem 372:131143

  40. Del Pilar Garcia-Mendoza M, Espinosa-Pardo FA, Savoire R, Harscoat-Schiavo C, Cansell M, Subra-Paternault P (2021) Food Chem 341:128234

Download references

Funding

The authors acknowledge the National Council for Scientific and Technological Development (CNPq) and the Federal University of Bahia (UFBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laise Cedraz Pinto.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das Chagas Lima, N.N., Faustino, D.C., de Almeida, B.S. et al. Extracts from “Mother of thousands” (Kalanchoe daigremontiana) are potent compounds to improve vegetable oil stability during storage. Eur Food Res Technol 249, 1627–1635 (2023). https://doi.org/10.1007/s00217-023-04243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04243-8

Keywords

Navigation