Skip to main content
Log in

Comparison of mineral concentration and bioavailability of various modern and old bread wheat varieties grown in Anatolia in around one century

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The main aim of this study was to compare mineral and protein contents of modern and old bread wheat varieties and Anatolian landraces to determine whether there have been important alterations in properties examined in around one century (since the 1930s). Mineral bioavailabilities of whole wheat breads of these wheats were also compared. The einkorn sample (landrace: Siyez) had the highest protein content (16.8%) in Ankara location among all modern and old wheats and landraces. The highest mineral contents were generally determined in landraces among all genotypes grown in Ankara location. The landraces had higher mean grain Ca, K, Mg, Mn, P, and Zn concentrations (mg.kg−1) than the modern wheat varieties. Karakilcik (landrace) had the highest Ca (1248), Cu (5.62), Fe (44.48), K (4826), Mg (1531), and P (4685) concentrations (mg.kg−1). Siyez (landrace) had the highest Cu (5.68), while Sunter (landrace) had the highest K (4950) and Zn (33.59) concentrations (mg.kg−1). Old wheat varieties had the highest Ca, Fe, and Mn bioavailabilities (in vitro), while modern wheat varieties had the highest Cu and S bioavailabilities in their whole wheat breads. Hence, old and modern wheat varieties and landraces could be used for enhancing the genetic basis of breeding programs in different aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martínez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B, Alcaraz-López C, Bastías E, García-Viguera C, Carvajal M (2010) Minerals in plant food: effect of agricultural practices and role in human health. Agron Sustain Dev 30:295–309. https://doi.org/10.1051/agro/2009022

    Article  CAS  Google Scholar 

  2. Del Coco L, Laddomada B, Migoni D, Mita G, Simeone R, Fanizzi F (2019) Variability and site dependence of grain mineral contents in tetraploid wheats. Sustainability 11:736. https://doi.org/10.3390/su11030736

    Article  CAS  Google Scholar 

  3. Hussain A, Larsson H, Kuktaite R, Johansson E (2010) Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake. Int J Environ Res Public Health 7:3442–3456. https://doi.org/10.3390/ijerph7093442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellström J, Ovaskainen M-L (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495. https://doi.org/10.1016/j.jfca.2007.02.007

    Article  CAS  Google Scholar 

  5. Pongrac P, Kreft I, Vogel-Mikuš K, Regvar M, Germ M, Vavpetič P, Grlj N, Jeromel L, Eichert D, Budič B, Pelico P (2013) Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain. J R Soc Interface 10:20130296. https://doi.org/10.1098/rsif.2013.0296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borg S, Brinch-Pedersen H, Tauris B, Holm PB (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325:15–24. https://doi.org/10.1007/s11104-009-0046-6

    Article  CAS  Google Scholar 

  7. Brier ND, Gomand SV, Donner E, Paterson D, Delcour JA, Lombi E, Smolders E (2015) Distribution of minerals in wheat grains (Triticum aestivum L.) and in roller milling fractions affected by pearling. J Agric Food Chem 63:1276–1285. https://doi.org/10.1021/jf5055485

    Article  CAS  PubMed  Google Scholar 

  8. Akhter S, Saeed A, Irfan M, Malik KA (2012) In vitro dephytinization and bioavailability of essential minerals in several wheat varieties. J Cereal Sci 56:741–746. https://doi.org/10.1016/j.jcs.2012.08.017

    Article  CAS  Google Scholar 

  9. Platel K, Srinivasan K (2016) Bioavailability of micronutrients from plant foods: an update. Crit Rev Food Sci Nutr 56:1608–1619. https://doi.org/10.1080/10408398.2013.781011

    Article  CAS  PubMed  Google Scholar 

  10. Lazarte CE, Carlsson N-G, Almgren A, Sandberg A-S, Granfeldt Y (2015) Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. J Food Compos Anal 39:111–119. https://doi.org/10.1016/j.jfca.2014.11.015

    Article  CAS  Google Scholar 

  11. Akcura M, Kokten K (2017) Variations in grain mineral concentrations of Turkish wheat landraces germplasm. Qual Assur Saf Crops Foods 9:153–159. https://doi.org/10.3920/QAS2016.0886

    Article  CAS  Google Scholar 

  12. Angelino D, Cossu M, Marti A, Zanoletti M, Chiavaroli L, Brighenti F, Del Rio D, Martini D (2017) Bioaccessibility and bioavailability of phenolic compounds in bread: a review. Food Funct 8:2368–2393. https://doi.org/10.1039/C7FO00574A

    Article  CAS  PubMed  Google Scholar 

  13. Turnlund JR (1991) Bioavailability of dietary minerals to humans: the stable isotope approach. Crit Rev Food Sci Nutr 30:387–396. https://doi.org/10.1080/10408399109527549

    Article  CAS  PubMed  Google Scholar 

  14. Cámara F, Amaro MA, Barberá R, Clemente G (2005) Bioaccessibility of minerals in school meals: comparison between dialysis and solubility methods. Food Chem 92(3):481–489. https://doi.org/10.1016/j.foodchem.2004.08.009

    Article  CAS  Google Scholar 

  15. Amalraj A, Pius A (2015) Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India – an in vitro study. Food Chem 170:430–436. https://doi.org/10.1016/j.foodchem.2014.08.031

    Article  CAS  PubMed  Google Scholar 

  16. Alegría-Torán A, Barberá-Sáez R, Cilla-Tatay A (2015) Bioavalibility of minerals infoods. In: de la Guardia M, Garrigues S (eds) handbook of mineral elements in food. Wiley Blackwell, Chichester, pp 41–68

    Google Scholar 

  17. Kiewlicz J, Rybicka I (2020) Minerals and their bioavailability in relation to dietary fiber, phytates and tannins from gluten and gluten-free flakes. Food Chem 305:125452. https://doi.org/10.1016/j.foodchem.2019.125452

    Article  CAS  PubMed  Google Scholar 

  18. Cetiner B, Tömösközi S, Török K, Salantur A, Koksel H (2020) Comparison of the arabinoxylan composition and physical properties of old and modern bread wheat (Triticum aestivum L.) and landraces genotypes. Cereal Chem 97:505–514. https://doi.org/10.1002/cche.10265

    Article  CAS  Google Scholar 

  19. Cetiner B, Tömösközi S, Schall E, Salantur A, Koksel H (2022) Bile acid binding capacity, dietary fibre and phenolic contents of modern and old bread wheat varieties and landraces: a comparison over the course of around one century. Eur Food Res Technol 248:589–598. https://doi.org/10.1007/s00217-021-03906-8

    Article  CAS  Google Scholar 

  20. AACCI (2000) Approved methods of the AACC international, 10th edn. The Association, St. Paul, MN, USA

  21. Cetiner B, Acar O, Kahraman K, Sanal T, Koksel H (2017) An investigation on the effect of heat-moisture treatment on baking quality of wheat by using response surface methodology. J Cereal Sci 74:103–111. https://doi.org/10.1016/j.jcs.2017.01.002

    Article  CAS  Google Scholar 

  22. Ryan A (2005) Rapid measurement of major, minor and trace elements in plant and food material using the Varian 730-ES. ICP-OES Application Note Number 33. www.varianinc.com

  23. Suliburska J, Krejpcio Z (2014) Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J Food Sci Technol 51:589–594. https://doi.org/10.1007/s13197-011-0535-5

    Article  CAS  PubMed  Google Scholar 

  24. Brandolini A, Hidalgo A, Moscaritolo S (2008) Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J Cereal Sci 47:599–609. https://doi.org/10.1016/j.jcs.2007.07.005

    Article  CAS  Google Scholar 

  25. Hussain S, Maqsood M, Miller L (2012) Bioavailable zinc in grains of bread wheat varieties of Pakistan. Cereal Res Commun 40:62–73. https://doi.org/10.1556/CRC.2011.003

    Article  CAS  Google Scholar 

  26. Biel W, Jaroszewska A, Stankowski S, Sobolewska M, Kępińska-Pacelik J (2021) Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur Food Res Technol 247:1525–1538. https://doi.org/10.1007/s00217-021-03729-7

    Article  CAS  Google Scholar 

  27. Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295. https://doi.org/10.1016/j.jcs.2008.11.007

    Article  CAS  Google Scholar 

  28. Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food Nutr Bull 21:401–403. https://doi.org/10.1177/156482650002100411

    Article  Google Scholar 

  29. Frontela C, Ros G, Martínez C (2011) Phytic acid content and “in vitro” iron, calcium and zinc bioavailability in bakery products: the effect of processing. J Cereal Sci 54:173–179. https://doi.org/10.1016/j.jcs.2011.02.015

    Article  CAS  Google Scholar 

  30. Shepelev S, Morgounov A, Flis P, Koksel H, Li H, Savin T, Sharma R, Wang J, Shamanin V (2022) Variation of macro- and microelements, and trace metals in spring wheat genetic resources in Siberia. Plants 11:149. https://doi.org/10.3390/plants11020149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soares JH (1995) Phosphorus bioavailability. Bioavailability of Nutrients for Animals. Academic Press, 257–294. https://doi.org/10.1016/B978-0-12-056250-3.X5024-0

    Chapter  Google Scholar 

  32. Weremko D, Fandrejewski H, Zebrowska T, Han IK, Kim JH, Cho WT (1997) Bioavailability of phosphorus in feeds of plant origin for pigs-review. Asian-Australas J Anim Sci 10:551–566. https://doi.org/10.5713/ajas.1997.551

    Article  CAS  Google Scholar 

  33. Aguilar MV, Mateos C, Meseguer I, Martinez-Para M (2012) Calcium availability in breakfast cereals: effect of other food components. Eur Food Res Technol 235:489–495. https://doi.org/10.1007/s00217-012-1773-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the General Directorate of Agricultural Research and Policies for supporting the project numbered with TAGEM/HSGYAD/A/19/A3/P1/1183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamit Koksel.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetiner, B., Ozdemir, B., Yazar, S. et al. Comparison of mineral concentration and bioavailability of various modern and old bread wheat varieties grown in Anatolia in around one century. Eur Food Res Technol 249, 587–596 (2023). https://doi.org/10.1007/s00217-022-04153-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04153-1

Keywords

Navigation