Skip to main content
Log in

ACE inhibitory effect of the protein hydrolysates prepared from commercially available nori product by pepsin–trypsin digestion

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

We studied angiotensin I converting enzyme (ACE) inhibitory effect of the protein hydrolysates prepared from commercially available nori products that contain Pyropia pseudolinearis as the main ingredient. The water extract of the nori product consisted mainly of phycobiliproteins and RubisCO. The proteins in the aqueous extracts were sequentially hydrolyzed with pepsin and trypsin, and the peptides in the pepsin–trypsin digests were fractionated by reversed-phase HPLC. As a result, 12 ACE inhibitory peptides containing ten novel peptides were identified. These peptides are suggested to have originated from the α- and β-subunits of phycobiliproteins and the large subunits of RubisCO of P. pseudolinearis. The interactions of eight peptides (ALR, FAR, FSR, FDR, EVYR, AYR, GRP, and MVT) with ACE were then simulated using the flexible docking tool Auto Dock Vina. The results showed that all peptides interacted with the active center of ACE, and their docking scores ranged from − 6.8 to − 10.2 kcal/mol. In addition, we synthesized four peptides (AYR, FAR, EVYR, and GRP) and measured the IC50 values of these peptides for ACE. Consequently, FAR and GRP showed considerably low IC50 values (0.29 μmol and 0.45 μmol, respectively) in addition to other ACE inhibitory peptides. Moreover, FAR, which is specific to the nori product, was predicted to bind to the S1, S1′, and S2′ subsites of the catalytic center of ACE. Therefore, it can be expected that daily intake of "nori products" may have a positive effect on the prevention of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2021) Newsroom/Fact sheets/Detail/ Hypertension. https://www.who.int/news-room/fact-sheets/detail/hypertension. Accessed 25 Aug 2021

  2. Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B (2017) Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 9:316

    Article  CAS  Google Scholar 

  3. Skeggs LT, Kahn JR, Shumway NP (1956) The preparation and function of the hypertensin-converting enzyme. J Exp Med 103:295–299

    Article  CAS  Google Scholar 

  4. Messerli FH (1999) Outcome studies are all antihypertensive drugs created equal? J Am Coll Cardiol 34:1652–1653

    Article  CAS  Google Scholar 

  5. Bicket DP (2002) Using ACE inhibitors appropriately. Am Fam Physician 66:461–468

    PubMed  Google Scholar 

  6. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, Horio T, Hoshide S, Ikeda S, Ishimitsu T et al (2019) The Japanese society of hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res 42:1235–1481

    Article  Google Scholar 

  7. Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM (2021) A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules 11:631

    Article  CAS  Google Scholar 

  8. Xue L, Yin R, Howell K, Zhang P (2021) Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme–inhibitory peptides. Compr Rev Food Sci Food Saf 20:1150–1187

    Article  CAS  Google Scholar 

  9. Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T (2002) Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J Agric Food Chem 50:6245–6252

    Article  CAS  Google Scholar 

  10. Cha SH, Lee KW, Jeon YJ (2006) Screening of extracts from red algae in Jeju for potentials marine angiotensin-I converting enzyme (ACE) inhibitory activity. Algae 21:343–348

    Article  Google Scholar 

  11. Holdt LS, Kraan S (2011) Bioactive compound in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  12. Cermeno M, Kleelayai T, Amigo-Benavent M, Harnedy-Rothwell P, FitzGerald RJ (2020) Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 41:1694–1717

    Article  CAS  Google Scholar 

  13. Furuta T, Miyabe Y, Yasui H, Kinoshita Y, Kishimura H (2016) Angiotensin I converting enzyme inhibitory peptides derived from phycobiliproteins of dulse Palmaria palmata. Mar Drugs 14:32

    Article  CAS  Google Scholar 

  14. Miyabe Y, Furuta T, Takeda T, Kanno G, Shimizu T, Tanaka Y, Gai Z, Yasui H, Kishimura H (2017) Structural properties of phycoerythrin from dulse Palmaria palmata. J Food Biochem 41:e12301

    Article  CAS  Google Scholar 

  15. Kitade Y, Miyabe Y, Yamamoto Y, Takeda H, Shimizu T, Yasui H, Kishimura H (2018) Structural characteristics of phycobiliproteins from red alga Mazzaella japonica. J Food Biochem 42:e12436

    Article  CAS  Google Scholar 

  16. Kumagai Y, Kitade Y, Kobayashi M, Watanabe K, Kurita H, Takeda H, Yasui H, Kishimura H (2020) Identification of ACE inhibitory peptides from red alga Mazzaella japonica. Eur Food Res Technol 246:2225–2231

    Article  CAS  Google Scholar 

  17. Sumikawa K, Takei K, Kumagai Y, Shimizu T, Yasui H, Kishimura H (2020) In silico analysis of ACE inhibitory peptides from chloroplast proteins of red alga Grateloupia asiatica. Mar Biotechnol 22:391–402

    Article  CAS  Google Scholar 

  18. Tsurunaga Y, Takahashi T, Matsumoto S, Nagata Y, Yoshino K (2017) Color, texture, mineral, volatile components, and shape of naturally occurring Uppurui nori (Porphyra pseudolinearis). Food Preserv Sci 43:63–70

    Google Scholar 

  19. Kumagai Y, Toji K, Katsukura S, Morikawa R, Uji T, Yasui H, Shimizu T, Kishimura H (2021) Characterization of ACE inhibitory peptides prepared from Pyropia pseudolinearis protein. Mar Drugs 19:200

    Article  CAS  Google Scholar 

  20. Bellgrove A, Nakaya F, Serisawa Y, Tatsuyama-Serisawa K, Kagami Y, Jones PM, Suzuki H, Kawano S, Aoki MN (2020) Maintenance of complex life cycles via cryptic differences in the ecophysiology of haploid and diploid spores of an isomorphic red alga. J Phycol 56:159–169

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  22. Minkiewicz P, Iwaniak A, Darewicz M (2019) BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci 20:5978

    Article  CAS  Google Scholar 

  23. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  Google Scholar 

  24. Xhang J, Ma J, Liu D, Qin S, Sun S, Zhao J, Sui SF (2017) Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551:58–63

    Google Scholar 

  25. Lundell DJ, Glazer AN, Delange RJ, Brown DM (1984) Bilin attachment sites in the α- and β-subunits of B-phycoerythrin: amino acid sequence studies. J Biol Chem 259:5472–5480

    Article  CAS  Google Scholar 

  26. Ficner R, Lobeck K, Schmidt G, Huber R (1992) Isolation, crystallization, structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 Å resolution. J Mol Biol 228:935–950

    Article  CAS  Google Scholar 

  27. Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79–96

    Article  CAS  Google Scholar 

  28. Fan H, Liao W, Wu J (2018) Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. J Food Biochem 43:e12572

    Article  CAS  Google Scholar 

  29. Lopez-Fandino R, Otte J, van Camp J (2006) Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int Dairy J 16:1277–1293

    Article  CAS  Google Scholar 

  30. Guang C, Phillips RD (2009) Plant food-derived angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem 57:5113–5120

    Article  CAS  Google Scholar 

  31. FitzGerald RJ, Meisel H (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr 84:S33–S37

    Article  CAS  Google Scholar 

  32. Murray BA, FitzGerald RJ (2007) Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr Pharm Des 13:773–791

    Article  CAS  Google Scholar 

  33. Natesh R, Schwager SLU, Sturrock ED, Acharya KR (2003) Crystal structure of the human enzyme-lisinopril complex. Nature 421:1427–1429

    Article  CAS  Google Scholar 

  34. Lin K, Zhang L, Han X, Meng Z, Zhang J, Wu Y, Cheng D (2018) Quantitative structure-activity relationship modeling coupled with molecular docking analysis in screening of angiotensin I-converting enzyme inhibitory peptides from Qula casein hydrolysates obtained by two-enzyme combination hydrolysis. J Agric Food Chem 66:3221–3228

    Article  CAS  Google Scholar 

  35. Gu Y, Wu J (2013) LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins. Food Chem 141:2682–2690

    Article  CAS  Google Scholar 

  36. Natesh R, Schwager SLU, Edward D, Sturrock ED, Acharya KR (2003) Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421(30):551–554

    Article  CAS  Google Scholar 

  37. Masuyer G, Schwager SLU, Sturrock ED, Isaac RE, Acharya KR (2012) Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci Rep 2:717

    Article  CAS  Google Scholar 

  38. Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y (1994) Angiotensin I-converting enzyme inhibitory peptides in an alkaline proteinase hydrolysate derived from sardine muscle. Biosci Biotech Biochem 58:2244–2245

    Article  CAS  Google Scholar 

  39. Sturrock ED, Natesh R, van Rooyen JM, Acharya KR (2004) Structure of angiotensin I-converting enzyme. Cell Mol Life Sci 61:2677–2686

    Article  CAS  Google Scholar 

  40. Corradi HR, Schwager SLU, Nchinda AT, Sturrock ED, Acharya KR (2006) Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. J Mol Biol 357:964–974

    Article  CAS  Google Scholar 

  41. Papakyriakou A, Spyroulias GA, Sturrock ED, Manessi-Zoupa E, Cordopatis P (2007) Simulated interactions between angiotensin-converting enzyme and substrate gonadotropin-releasing hormone: novel insights into domain selectivity. Biochemistry 46:8753–8765

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Toshiki Uji for providing useful information on red algae species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kishimura.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethics requirements

This article dose not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, R., Toji, K., Kumagai, Y. et al. ACE inhibitory effect of the protein hydrolysates prepared from commercially available nori product by pepsin–trypsin digestion. Eur Food Res Technol 248, 243–251 (2022). https://doi.org/10.1007/s00217-021-03876-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03876-x

Keywords

Navigation