Skip to main content
Log in

Evaluation of the Food Sniffer electronic nose for assessing the shelf life of fresh pork meat compared to physicochemical measurements of meat quality

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In food technology applications, electronic noses have been used on the on-line control of different processes. In this study, assessment of shelf life of fresh pork meat that had been stored under refrigeration in aerobic conditions using an electronic nose pocket device was tried. The physicochemical, sensory, and microbiological parameters of white female pork tenderloin, stored at 4 °C for 7 days, were related to the response obtained with an electronic nose device (Food Sniffer®) (FS) to validate its possible use as a rapid method of determining the shelf life of meat. The response of the electronic nose device, qualitatively validated, was significantly correlated with some parameters as microbiological counts or sensory parameters; unfortunately, tight quantitative limits between FS response and some analytical results as biogenic amine content could not be related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosinká D, Lehotay J (2014) Influence of temperature on production of biogenic amines in pork, beef and poultry and their HPLC determination after post-column derivatization. J Liq Chromatogr Relat Technol 37:609–619

    Article  CAS  Google Scholar 

  2. Aquiles C, Adam C, Carolina A, Guerra ML, Costa B, Gomes A, Teixeira E, Maia R (2015) Biogenic amines as bacterial quality indicators in different poultry meat species. LWT Food Sci Technol 60:15–21

    Article  CAS  Google Scholar 

  3. Nychas GJE, Skandamis PN, Koutsoumanis KP (2008) Meat spoilage during distribution. Meat Sci 78:77–89

    Article  PubMed  Google Scholar 

  4. Casaburi A, Piombino P, Nychas GJ, Villani F, Ercolini D (2015) Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 37:83–102

    Article  CAS  Google Scholar 

  5. Peris M, Gilabert L (2013) On-line monitoring of food fermentation processes using electronic noses and electronic tongues: a review. Anal Chim Acta 804:29–36

    Article  CAS  PubMed  Google Scholar 

  6. Sankaran S, Khot L, Panigrahi S (2012) Biology and applications of olfactory sensing system: a review. Sens Actuators B 171–172:1–17

    Article  CAS  Google Scholar 

  7. Jiang H, Zhang H, Chen Q, Meil C, Liu G (2015) Recent advances in electronic nose techniques for monitoring of fermentation process. World J Microbiol Biotechnol 31:1845–1852

    Article  CAS  PubMed  Google Scholar 

  8. Szulczynski B, Gebicki J (2017) Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4(21):1–15

    Google Scholar 

  9. Li W, Friel J, Beta T (2010) An evaluation of the antioxidant properties and aroma quality of infant cereals. Food Chem 121:1095–1102

    Article  CAS  Google Scholar 

  10. Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P (2010) Extracellular potentials recording intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron 25:2212–2217

    Article  CAS  PubMed  Google Scholar 

  11. Legin A, Kirsanov D, Rudnitskaya A, Iversen JL, Seleznev B, Esbensen KH, Mortensen J, Houmoller LP, Vlasov Y (2004) Multicomponent analysis of fermentation growth media using the electronic tongue (ET). Talanta 64:766–772

    Article  CAS  PubMed  Google Scholar 

  12. Wilson AD (2013) Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13:2295–2348

    Article  CAS  PubMed  Google Scholar 

  13. Bernáth J, Novák I, Szabó K, Seregély Z (2005) Evaluation of selected oregano (Origanum vulgare L subsp Hirtum Ietswaart) lines with traditional methods and sensory analysis. J Herbs Spices Med Plants 11:19–26

    Article  CAS  Google Scholar 

  14. Fujioka K, Shirasu M, Manome Y, Ito N, Kakishima S, Minami T, Tominaga T, Shimozono F, Iwamoto T, Ikeda K (2012) Objective display and discrimination of floral odors from Amorphophallus titanium, bloomed on different dates and at different locations, using an electronic nose. Sensors 12:2152–2161

    Article  CAS  PubMed  Google Scholar 

  15. Santoyo M, Chalier P, Chevalier-Lucia D, Ghommidh C, Ragazzo-Sanchez J (2010) Identification of Saccharomyces cerevisiae strains for alcoholic fermentation by discriminant factorial analysis on electronic nose signals. Electron J Biotechnol 13:4. https://doi.org/10.2225/vol13-issue4-fulltext-11

    Article  CAS  Google Scholar 

  16. Marilley L, Ampuero S, Zesiger T, Casey M (2004) Screening of aroma-producing lactic acid bacteria with an electronic nose. Int Dairy J 14:849–856

    Article  CAS  Google Scholar 

  17. Bhattacharya N, Tud B, Jana A, Ghosh D, Bandhopadhyaya R, Bhuyan M (2008) Preemptive identification of optimum fermentation time for black tea using electronic nose. Sens Actuators B 131:110–116

    Article  CAS  Google Scholar 

  18. Haugen JE, Rudi K, Langsrud S, Bredholt S (2006) Application of gas-sensor array technology for detection and monitoring of growth of spoilage bacteria in milk: a model study. Anal Chim Acta 565:10–16

    Article  CAS  Google Scholar 

  19. Panigrahia S, Balasubramaniana S, Gua H, Logueb C, Marchelloc M (2006) Neural-network-integrated electronic nose system for identification of spoiled beef. LWT Food Sci Technol 39:135–145

    Article  CAS  Google Scholar 

  20. El Barbri N, Llobet E, El Bari N, Correig X, Bouchikhi B (2008) Application of a portable electronic nose system to assess the freshness of Moroccan sardines. Mater Sci Eng C 28:666–670

    Article  CAS  Google Scholar 

  21. ISO Method 1442 (1997) Meat and meat products determination of moisture content. International Organization for Standardization. http://www.iso.org/iso/catalogue_detailhtm?csnumber=6037. Accessed Oct 2015

  22. Wu H, Li G, Liu S, Zhongyin J, Zhang Q, Hu N, Suo Y, You J (2015) Simultaneous determination of seven biogenic aminesin foodstuff samples using one-step fluorescence labeling and dispersive liquid–liquid microextraction followed by HPLC-FLD and method optimization using response surface methodology. Food Anal Methods 8:685–695

    Article  Google Scholar 

  23. Gómez-Alonso S, Hermosín I, García-Romero E (2007) Simultaneous HPLC analysis of biogenic amines, amino acids and ammonium ion as aminoenones derivatives in wine and beer samples. J Agric Food Chem 55:608–613

    Article  CAS  PubMed  Google Scholar 

  24. UNE-ISO 4121 (2006) Análisis sensorial Directrices para la utilización de escalas de respuestas cuantitativas In “Análisis Sensorial”, 2ª edn. AENOR, Madrid, p 195

    Google Scholar 

  25. Niven CF Jr (1994) Microbiología y parasitología de la carne. En: Ciencia de la carne y de los productos cárnicos. In: Price JF, Schweigert BG (eds) Ed Acribia SA, Zaragoza, Spain, pp 199–238 (ISBN 978-84-200-0759-5)

  26. Rodel W, Scheuer R (2000) Redox Potential of meat and meat products—4 use of redox potential as a criterium of the quality of meat and meat products. Fleischwirtschaft 80:90–93

    Google Scholar 

  27. Gil L, Barat JM, Baigts D, Máñez R, Soto J, Garcia-Breijo E, Aristoy MC, Toldrá F, Llobet E (2011) Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chem 126:1261–1268

    Article  CAS  Google Scholar 

  28. Soriano A, Villaseñor PJ, Utrilla MC, Lopez A, Garcia Ruiz A (2009) Efecto de la refrigeración sobre los parámetros microbiológicos, físico-químicos y los relacionados con el color, la proteólisis y la oxidación lipídica del lomo de cerdo blanco. Alimentaria 406:76–82

    Google Scholar 

  29. Flasarová R, Pachlová V, Bunková L, Menšíková A, Georgová N, Dráb V, Bunka F (2016) Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese. Food Chem 194:68–75

    Article  CAS  PubMed  Google Scholar 

  30. Kalac P (2006) Biologically active polyamines in beef, pork and meat products: a review. Meat Sci 73:1–11

    Article  CAS  PubMed  Google Scholar 

  31. Ouali A (1990) Meat tenderisation: possible causes and mechanisms. A review. J Muscle Foods 1:129–165

    Article  Google Scholar 

  32. Smulders FJM, Van Laack RLJM., Eikelenboom G (1991) Muscle and meat quality: biological basis, processing, preparation. In: Smulders FJM (ed) The European meat industry in the 1990’s. ECCEAMST, Nijmegen, pp 121–165

    Google Scholar 

  33. Beutling D von (1993) Studies on the formation of tyramine by microbes with food hygienic relevance. Arch Lebensmittelhyg 44:83–87

    CAS  Google Scholar 

  34. Halász A, Baráth A, Simon-Sarkadi L, Holzapfel W (1994) Biogenic amines and their production by microorganisms in food. Trend Food Sci Technol 5:42–49

    Article  Google Scholar 

  35. Charles N, Williams SK, Rodrick GE (2006) Effects of packaging systems on the natural microflora and acceptability of chicken breast meat. Poult Sci 85:1798–1801

    Article  CAS  PubMed  Google Scholar 

  36. Chouliara E, Badeka A, Savvaidis I, Kontominas MG (2008) Combined effect of irradiation and modified atmosphere packaging on shelf-life extension of chicken breast meat: microbiological, chemical and sensory changes. Eur Food Res Technol 226:877–888

    Article  CAS  Google Scholar 

  37. Commission Regulation (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005, on microbiological criteria for foodstuffs

Download references

Acknowledgements

This work was funded by the European Union Regional Development Fund through a scholarship at the Universidad de Castilla La Mancha (Spain) awarded to Hector Ramirez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ubeda Iranzo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requeriments

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez, H.L., Soriano, A., Gómez, S. et al. Evaluation of the Food Sniffer electronic nose for assessing the shelf life of fresh pork meat compared to physicochemical measurements of meat quality. Eur Food Res Technol 244, 1047–1055 (2018). https://doi.org/10.1007/s00217-017-3021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-3021-0

Keywords

Navigation