Skip to main content

Advertisement

Log in

Effects of high pressure processing on bioactive compounds in spinach and rosehip puree

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

High pressure processing (HPP) is a novel food processing technology that uses minimal heat and preservatives. It can inactivate a variety of pathogenic and spoilage bacteria to ensure safe foods and extend shelf life by maintaining nutritional and sensory attributes. The present investigation studied the effects of HPP (200, 400, 600 MPa; 5, 10 min; room temperature) on the following parameters: contents of carotenoids and vitamin E and antioxidant capacity (AOC) in spinach and rosehip puree; chlorophyll contents in spinach and in vitro bioaccessibility of carotenoids in rosehip puree. Contents of carotenoids, chlorophylls and vitamin E were determined by HPLC. AOC was analysed by several assays (total phenolics, TEAC, ORAC). In spinach, HPP led to a significant increase of the content of carotenoids, chlorophylls and vitamin E, probably due to an increased extractability. Total carotenoid content in rosehip puree was almost unchanged by HPP with single carotenoids behaving differently. The in vitro digestion model showed that 42.2 ± 7.4% of the total carotenoids of the rosehip puree was released and is potentially available for absorption. HPP had no significant effect on the bioaccessibility of total carotenoids. No distinct trend for the effects of HPP on the tocopherol contents in both food samples could be deduced. Mostly, no changes were induced by pressure. In both plant foods, the AOC was retained. The results provide further scientific evidence of the benefits of HPP in retaining micronutrients and phytochemical properties of plant foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balasubramaniam VM, Ting EY, Stewart CM, Robbins JA (2004) Innov Food Sci Emerg Technol 5:299–306

    Article  CAS  Google Scholar 

  2. Deliza R, Rosenthal A, Abadio FBD, Silva CHO, Castillo C (2005) J Food Eng 67:241–246

    Article  Google Scholar 

  3. Oey I, Van der Plancken I, Van Loey A, Hendrickx M (2008) Trends Food Sci Technol 19:300–308

    Article  CAS  Google Scholar 

  4. Van der Plancken I, Verbeyst L, De Vleeschouwer K, Grauwet T, Heiniö R-L, Husband FA, Lille M, Mackie AR, Van Loey A, Viljanen K, Hendrickx M (2012) Trends Food Sci Technol 23:28–38

    Article  Google Scholar 

  5. Oey I, Lille M, Van Loey A, Hendrickx M (2008) Trends Food Sci Technol 19:320–328

    Article  CAS  Google Scholar 

  6. Arnold C, Schwarzenbolz U, Böhm V (2014) LWT Food Sci Technol 57:442–445

    Article  CAS  Google Scholar 

  7. Canene-Adams K, Erdman JW Jr (2009) In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids volume 5: nutrition and health. Basel, Birkhäuser

    Google Scholar 

  8. McInerney JK, Seccafien CA, Stewart CM, Bird AR (2007) Innov Food Sci Emerg Technol 8:543–548

    Article  CAS  Google Scholar 

  9. Svelander CA, Lopez-Sanchez P, Pudney PD, Schumm S, Alminger MA (2011) J Food Sci 76:H215–H225

    Article  CAS  Google Scholar 

  10. Werner S (2010) Carotinoide und Vitamin E in Hartweizen und daraus hergestellten Teigwaren—analytische, technologische und ernährungsphysiologische Aspekte. Dissertation, Friedrich Schiller University Jena, Jena, Germany

  11. Franke S, Fröhlich K, Werner S, Böhm V, Schöne F (2010) Eur J Lipid Sci Technol 112:1122–1129

    Article  CAS  Google Scholar 

  12. Brose A (2010) Humaninterventionsstudien zur Untersuchung der intestinalen Absorption von Lycopin und Rubixanthin aus Hagebuttenmark. Diploma thesis, Friedrich Schiller University Jena, Jena, Germany

  13. Werner S, Böhm V (2011) J Agric Food Chem 59:1163–1170

    Article  CAS  Google Scholar 

  14. Al-Yafeai A, Böhm V (2015) Lebensmittelchemie 69:105

    Article  Google Scholar 

  15. Müller L, Gnoyke S, Popken AM, Böhm V (2010) LWT Food Sci Technol 43:992–999

    Article  Google Scholar 

  16. Khachik F, Goli MB, Beecher GR, Holden J, Lusby WR, Tenorio MD, Barrera MR (1992) J Agric Food Chem 40:390–398

    Article  CAS  Google Scholar 

  17. Kidmose U, Knuthsen P, Edelenbos M, Justesen U, Hegelund E (2001) J Sci Food Agric 81:918–923

    Article  CAS  Google Scholar 

  18. Sánchez C, Baranda AB, Martínez de Marañón I (2014) Food Chem 163:37–45

    Article  Google Scholar 

  19. Van Loey A, Ooms V, Weemaes C, Van den Broeck I, Ludikhuyze L, Indrawati, Denys S, Hendrickx M (1998) J Agric Food Chem 46:5289–5294

    Article  Google Scholar 

  20. Wang R, Ding S, Hu X, Liao X, Zhang Y (2016) Eur Food Res Technol 242:1533–1543

    Article  CAS  Google Scholar 

  21. Hornero-Méndez D, Mínguez-Mosquera MI (2000) J Agric Food Chem 48:825–828

    Article  Google Scholar 

  22. Sánchez-Moreno C, Plaza L, de Ancos B, Cano MP (2006) J Sci Food Agric 86:171–179

    Article  Google Scholar 

  23. Krebbers B, Matser AM, Hoogerwerf SW, Moezelaar R, Tomassen MMM, van den Berg RW (2003) Innov Food Sci Emerg Technol 4:377–385

    Article  Google Scholar 

  24. Gupta R, Balasubramaniam VM, Schwartz SJ, Francis DM (2010) J Agric Food Chem 58:8305–8313

    Article  CAS  Google Scholar 

  25. de Ancos B, Sgroppo S, Plaza L, Cano MP (2002) J Sci Food Agric 82:790–796

    Article  Google Scholar 

  26. Jeffery JL, Turner ND, King SR (2012) J Sci Food Agric 92:2603–2610

    Article  CAS  Google Scholar 

  27. Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C, Blanco-Navarro I, Pérez-Sacristán B, Blázquez-García S (2007) Food Chem 102:641–648

    Article  CAS  Google Scholar 

  28. Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C, Perez-Sacristan B, Blanco-Navarro I, Blazquez-Garcia S (2007) J Agric Food Chem 55:6387–6394

    Article  CAS  Google Scholar 

  29. Sólyom K, Maier C, Weiss J, Cocero MJ, Mato RB, Carle R, Schweiggert R (2014) Food Res Int 66:107–114

    Article  Google Scholar 

  30. Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG, Högel J, Quesada S, Esquivel P, Schwartz SJ, Carle R (2014) Br J Nutr 111:490–498

    Article  CAS  Google Scholar 

  31. Schweiggert RM, Carle R (2017) Crit Rev Food Sci 57:1807–1830

    CAS  Google Scholar 

  32. Alminger M, Aura AM, Bohn T, Dufour C, El SN, Gomes A, Karakaya S, Martínez-Cuesta MC, McDougall GJ, Requena T, Santos CN (2014) Compr Rev Food Sci F 13:413–436

    Article  CAS  Google Scholar 

  33. Garrett DA, Failla ML, Sarama RJ (1999) J Agric Food Chem 47:4301–4309

    Article  CAS  Google Scholar 

  34. Rodríguez-Roque MJ, de Ancos B, Sánchez-Vega R, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O (2016) Food Funct 7:380–389

    Article  Google Scholar 

  35. Gupta R, Kopec RE, Schwartz SJ, Balasubramaniam VM (2011) J Agric Food Chem 59:7808–7817

    Article  CAS  Google Scholar 

  36. Palmero P, Colle I, Lemmens L, Panozzo A, Nguyen TT, Hendrickx M, Van Loey A (2016) J Sci Food Agric 96:254–261

    Article  CAS  Google Scholar 

  37. Palmero P, Panozzo A, Colle I, Chigwedere C, Hendrickx M, Van Loey A (2016) Food Chem 199:423–432

    Article  CAS  Google Scholar 

  38. Chun J, Lee J, Ye L, Exler J, Eitenmiller RR (2006) J Food Compos Anal 19:196–204

    Article  CAS  Google Scholar 

  39. Kazaz S, Baydar H, Erbas S (2009) Czech J Food Sci 27:178–184

    CAS  Google Scholar 

  40. Piironen V, Syväoja EL, Varo P, Salminen K, Koivistoinen P (1986) J Agric Food Chem 34:742–746

    Article  CAS  Google Scholar 

  41. Yoruk IH, Turker M, Kazankaya A, Erez ME, Battal P, Celik F (2008) Asian J Chem 20:1357–1364

    CAS  Google Scholar 

  42. Dilley RA, Crane FL (1963) Plant Physiol 38:452–456

    Article  CAS  Google Scholar 

  43. Barba FJ, Esteve MJ, Frigola A (2012) J Agric Food Chem 60:3763–3768

    Article  CAS  Google Scholar 

  44. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) J Nutr 133:2812–2819

    Article  CAS  Google Scholar 

  45. Turkmen N, Sari F, Velioglu Y (2005) Food Chem 93:713–718

    Article  CAS  Google Scholar 

  46. U.S. Department of Agriculture ARS (2010) USDA Database for the oxygen radical absorbance capacity (ORAC) of selected foods, Release 2

  47. Taneva I, Petkova N, Dimov I, Ivanov I, Denev P (2016) J Pharmacogn Phytochem 5:35–38

    Google Scholar 

  48. Gao X, Björk L, Trajkovski V, Uggla M (2000) J Sci Food Agric 80:2021–2027

    Article  CAS  Google Scholar 

  49. Patras A, Brunton N, Da Pieve S, Butler F, Downey G (2009) Innov Food Sci Emerg Technol 10:16–22

    Article  CAS  Google Scholar 

  50. Patras A, Brunton NP, Da Pieve S, Butler F (2009) Innov Food Sci Emerg Technol 10:308–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Böhm.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphal, A., Schwarzenbolz, U. & Böhm, V. Effects of high pressure processing on bioactive compounds in spinach and rosehip puree. Eur Food Res Technol 244, 395–407 (2018). https://doi.org/10.1007/s00217-017-2964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2964-5

Keywords

Navigation