Skip to main content
Log in

Antibacterial effect of kaempferol and (−)-epicatechin on Helicobacter pylori

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Phenolic compounds are generated by the secondary metabolism of plants and have been associated with antibacterial properties. Among bacteria affecting human health, Helicobacter pylori has been associated with gastric cancer. There is limited information about the effect of individual or grouped phenolics on H. pylori growth. Previous studies have evaluated the effect of phenolics being part of highly complex food or beverage matrices. The aim of this work was to evaluate the in vitro antibacterial effect of kaempferol and (−)-epicatechin, both individually and combined, on H. pylori in liquid and solid cultures and in co-cultures with AGS human gastric carcinoma cells. Bacterial viability tests were performed in liquid cultures with subsequent CFU/mL counting and in solid cultures by measuring inhibition haloes. Kinetic curves of bacterial growth inhibition in the presence of those phenolics, and the protective effect of (−)-epicatechin on AGS cells against H. pylori infection were characterized. (−)-Epicatechin and kaempferol displayed antibacterial activities, being (−)-epicatechin more effective than kaempferol. After the combined application of both phenols, a synergistic effect of kaempferol plus low but not high doses of (−)-epicatechin was observed. Finally, (−)-epicatechin yielded protection to AGS cells against H. pylori infection. (−)-Epicatechin and kaempferol, both individually and combined, have antibacterial properties and protective effect on H. pylori infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dunn B, Cohen H, Blaser M (1997) Helicobacter pylori. Clin Microbiol Rev 10:720–741

    CAS  Google Scholar 

  2. Eusebi LH, Zagari RM, Bazzoli F (2014) Epidemiology of Helicobacter pylori infection. Helicobacter 19:1–5

    Article  Google Scholar 

  3. Nagani S (2012) Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 4:156–169

    Article  Google Scholar 

  4. Parkin D (2000) Global cancer statistics in the year. Lancet Oncol 2:533–543

    Article  Google Scholar 

  5. Yamaoka Y (2008) Helicobacter pylori—molecular genetics and cellular biology. Horizon Scientific Press, UK, p 261

    Google Scholar 

  6. O’Connor A, Vaira D, Gisbert JP, O’Morain C (2014) Treatment of Helicobacter pylori infection. Helicobacter 19:38–45

    Article  Google Scholar 

  7. Camargo MC, García A, Riquelme A, Otero W, Camargo CA, Hernandez-García T, Candia R, Bruce MG, Rabkin CS (2014) The problem of Helicobacter pylori resistance to antibiotics: a systematic review in Latin America. Am J Gastroenterol 109(4):485–495

    Article  CAS  Google Scholar 

  8. Aboderin OA, Abdu AR, Odetoyin B, Okeke IN, Lawal OO, Ndububa DA, Agbakwuru AE, Lamikanra A (2007) Antibiotic resistance of Helicobacter pylori from patients in Ile-Ife, South-west, Nigeria. Afr Health Sci 7(3):143–147

    Google Scholar 

  9. Vallejos C, Garrido L, Cáceres D, Madrid AM, Defilippi C, Defilippi CC, Toledo H (2007) Prevalence of metronidazole, clarithromycin and tetracycline resistance in Helicobacter pylori isolated from Chilean patients. Rev Med Chile 135:287–293

    Article  Google Scholar 

  10. Bonacorsi C, Raddi MS, Carlos IZ, Sannomiya M, Vilegas W (2009) Anti-Helicobacter pylori activity and immunostimulatory effect of extracts from Byrsonima crassa Nied. (Malpighiaceae). BMC Complement Altern Med 9:2

    Article  Google Scholar 

  11. Tombola F, Campello S, De Luca L, Ruggiero P, Del Giudice G, Papini E, Zoratti M (2003) Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogen Helicobacter pylori. FEBS Lett 543:184–189

    Article  CAS  Google Scholar 

  12. Mabe K, Yamada M, Oguni I, Takahashi T (1999) In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrob Agents Chemother 43(7):1788–1791

    CAS  Google Scholar 

  13. Mahady G, Pendland S, Chadwick L (2003) Resveratrol and red wine extracts inhibit the growth of CagAþ strains of Helicobacter pylori in vitro. Am J Gastroenterol 98:1440–1441

    Article  CAS  Google Scholar 

  14. Pastene P, Speisky H, García A, Moreno J, Troncoso M, Figueroa G (2010) In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori. J Agric Food Chem 58:7172–7179

    Article  CAS  Google Scholar 

  15. Brown J, Huang G, Haley-Zitlin V, Jiang X (2009) Antibacterial effects of grape extracts on Helicobacter pylori. Appl Environ Microbiol 75:848–852

    Article  CAS  Google Scholar 

  16. Martini S, D’Addario C, Colacevich A, Focardi S, Borghini F, Santucci A (2009) Figura N, Rossi C. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. Int J Antimicrob Agents 34:50–59

    Article  CAS  Google Scholar 

  17. Yanagawa Y, Yamamoto Y, Hara Y, Shimamura T (2003) A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Current Microbiol 47:244–249

    Article  CAS  Google Scholar 

  18. Vattem D, Lin Y, Ghaedian R, Shetty K (2005) Cranberry synergies for dietary management of Helicobacter pylori infections. Process Biochem 40:1583–1592

    Article  CAS  Google Scholar 

  19. Yahiro K, Shirasaka D, Tagashira M, Wada A, Morinaga N, Kuroda F, Choi O, Inoue M, Aoyama N, Ikeda M, Hirayama T, Moss J, Noda M (2005) Inhibitory effects of polyphenols on gastric injury by Helicobacter pylori VacA toxin. Helicobacter 10:231–239

    Article  CAS  Google Scholar 

  20. Díaz-Gómez R, López-Solís R, Obreque-Slier E, Toledo-Araya H (2013) Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT Food Sci Technol 54:331–335

    Article  Google Scholar 

  21. Obreque-Slier E, Peña-Neira A, López-Solís R, Zamora-Marín F, Ricardo da Silva J, Laureano O (2010) Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. J Agric Food Chemi 58:3591–3599

    Article  CAS  Google Scholar 

  22. Monagas M, Bartolomé B, Gómez-Cordovés C (2005) Update knowledge about the presence of phenolic compounds in wine. Crit Rev Food Sci Nutr 42:85–118

    Article  Google Scholar 

  23. Cerda O, Rivas A, Toledo H (2003) Helicobacter pylori strain ATCC 700392 encodes a methyl-accepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate. FEMS Microbiol Letters 224:175–181

    Article  CAS  Google Scholar 

  24. Toledo H, Valenzuela M, Rivas A, Jerez C (2002) Acid stress response in Helicobacter pylori. FEMS Microbiol Letters 213:67–72

    Article  CAS  Google Scholar 

  25. Almarza O, Nuñez D, Toledo H (2014) The DNA-binding protein HU has a regulatory role in the acid stress response mechanism in Helicobacter pylori. Helicobacter 20:29–40

    Article  Google Scholar 

  26. Toledo H, López-Solís R (2009) Tetracycline resistance in Chilean clinical isolates of Helicobacter pylori. J Antimicrob Chem 65:470–473

    Article  Google Scholar 

  27. Valenzuela M, Perez-Perez G, Corvalán AH, Carrasco G, Urra H, Bravo D, Toledo H, Quest AFG (2010) Helicobacter pylori induced loss of the inhibitor-of-apoptosis protein survivin is linked to gastritis and death of human gastric cells. J Infect Dis 202:1021–1030

    Article  CAS  Google Scholar 

  28. del Campo M, Toledo H, Lagos N (2013) Okadaic acid toxin at sublethal dose produced cell proliferation in gastric and colon epithelial cell lines. Mar Drugs 11:4751–4760

    Article  Google Scholar 

  29. Stevens K, Sheldon B, Klapes A, Klaenhammer T (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57:3613–3615

    CAS  Google Scholar 

  30. Romero C, Medina E, Vargas J, Brenes M, De Castro A (2007) In vitro activity of olive oil polyphenols against Helicobacter pylori. J Agric Food Chem 55:680–686

    Article  CAS  Google Scholar 

  31. Rodríguez M, Alberto M, Manca de Nadra M (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18:93–101

    Article  Google Scholar 

  32. Monagas M, Bartolomé B, Gómez-Cordovés C (2005) Updated knowledge about the presence of phenolic compounds in wine. Crit Rev Food Sci Nutr 45:85–118

    Article  CAS  Google Scholar 

  33. Brown JC, Huang G, Haley-Zitlin V, Jiang X (2009) Antibacterial effects of grape extracts on Helicobacter pylori. Appl Environ Microbiol 75:848–852

    Article  CAS  Google Scholar 

  34. Bisignano C, Filocamo A, La Camera E, Zummo S, Fera MT, Mandalari G (2013) Antibacterial activities of almond skins on cagA-positive and-negative clinical isolates of Helicobacter pylori. BMC Microbiol 13:103–109

    Article  Google Scholar 

  35. Brown JC, Jiang X (2013) Activities of muscadine grape skin and polyphenolic constituents against Helicobacter pylori. J Appl Microbiol 114:982–991

    Article  CAS  Google Scholar 

  36. Ruggiero P, Tombola F, Rossi G, Pancotto L, Lauretti L, Del Giudice G, Zoratti M (2006) Polyphenols reduce gastritis induced by Helicobacter pylori infection or VacA toxin administration in mice. Antimicrob Agents Chemother 50:2550–2552

    Article  CAS  Google Scholar 

  37. Díaz-Gómez R, Toledo-Araya H, López-Solís R, Obreque-Slier E (2014) Combined effect of gallic acid and catechin against Escherichia coli. LWT Food Sci Technol 59:896–900

    Article  Google Scholar 

  38. Spencer JPE (2003) Metabolism of tea flavonoids in the gastrointestinal tract. J Nutr 133(10):3255S–3261S

    CAS  Google Scholar 

  39. Obreque-Slier E, Peña-Neira A, López-Solís R, Zamora-Marín F, Ricardo da Silva J, Laureano JO (2010) Comparative study of the phenolic composition of seeds and skins from Carmenere and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. J Agric Food Chem 58:3591–3599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially funded by Program U-INICIA VID 2011 (EO) and by grants University of Chile 11/05 (EO) and Fondecyt-Chile 1120126 (HT). We would also want to thank Mr. Nicanor Villaroel for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elías Obreque-Slier or Héctor Toledo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Compliance with ethics requirements

The study was conducted according to the recommendations of the Declaration of Helsinki and approved by the Ethics Committee of the Faculty of Medicine, University of Chile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escandón, R.A., del Campo, M., López-Solis, R. et al. Antibacterial effect of kaempferol and (−)-epicatechin on Helicobacter pylori . Eur Food Res Technol 242, 1495–1502 (2016). https://doi.org/10.1007/s00217-016-2650-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2650-z

Keywords

Navigation