Skip to main content
Log in

Secretory expression and characterization of a novel thermo-stable, salt-tolerant endo-1,4-β-mannanase of Bacillus subtilis WD23 by Pichia pastoris

  • Review Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Endo-1,4-β-mannanases have a wide range of potential industrial applications. It was mainly used for the production of functional oligosaccharides in the food industry. In order to increase the production of endo-1,4-β-mannanases, inducible and constitutive expression of a novel endo-1,4-β-mannanase from Bacillus subtilis WD23 in Pichia pastoris GS115 was performed and the recombinant enzyme was characterized. The recombinant mannanase gene was successfully expressed in a fully active form in P. pastoris GS115, and the activity of recombinant mannanase reached to 5,156.742 U/mL, which was higher than those from other recombinant system. Optimal purified enzyme activity was detected at pH 6.3 and 70 °C, and the purified enzyme displayed broad temperature stability (40–70 °C). 150 mg/mL NaCl could still improve the activity of the enzyme. Flight mass spectrometry determination confirmed that recombinant proteins are mannanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Songsiriritthigul C, Buranabanyat B, Haltrich D, Yamabhai M (2010) Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis in Escherichia coli. Microb Cell Fact 9:20

    Article  Google Scholar 

  2. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  3. Benech RO, Li X, Patton D, Powlowski J, Storms R, Bourbonnais R (2007) Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzyme Microb Technol 41:740–747

    Article  CAS  Google Scholar 

  4. Wu G, Bryant MM, Voitle RA, Roland DA (2005) Effects of β-mannanase in corn–soy diets on commercial leghorns in second-cycle hens. Poult Sci 84:894–897

    Article  CAS  Google Scholar 

  5. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    Article  CAS  Google Scholar 

  6. Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  Google Scholar 

  7. Zahura UA, Rahman MM, Inoue A, Tanaka H, Ojima T (2011) cDNA cloning and bacterial expression of an endo-β-1,4-mannanase, AkMan, from Aplysia kurodai. Comp Biochem Physiol 159:227–235

    Article  Google Scholar 

  8. Jiang Z, Wei Y, Li D, Li L, Chai P, Kusakabe I (2006) High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr Polym 66:88–96

    Article  CAS  Google Scholar 

  9. Kim DY, Ham S-J, Lee HJ, Cho HY, Kim JH, Kim Y-J, Shin D-H, Rhee YH, Son K-H, Park H-Y (2011) Cloning and characterization of a modular GH5 β-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour Technol 19:9185–9192

    Article  Google Scholar 

  10. Zhou JP, Zhang R, Gao YJ, Li JJ, Tang XH, Mu YL, Wang F, Li C, Dong YY, Huang ZX (2012) Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain. J Biosci Bioeng 5:568–574

    Article  Google Scholar 

  11. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  Google Scholar 

  12. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  13. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  14. Summpunn P, Chaijan S, Isarangkul D, Wiyakrutta S, Meevootisom V (2011) Characterization, gene cloning, and heterologous expression of β-mannanase from a thermophilic Bacillus subtilis. J Microbiol 49:86–93

    Article  CAS  Google Scholar 

  15. Wang J, Shao ZZ, Hong YZ, Li CJ, Fu XY, Liu ZD (2010) A novel β-mannanase from Pantoea agglomerans A021: gene cloning, expression, purification and characterization. World J Microbiol Biotechnol 26:1777–1784

    Article  CAS  Google Scholar 

  16. Zhao W, Zheng J, Zhou HB (2011) A thermotolerant and cold-active mannan endo-1,4-β-mannosidase from Aspergillus niger CBS 513.88: constitutive over expression and high-density fermentation in Pichia pastoris. Bioresour Technol 102:7538–7547

    Article  CAS  Google Scholar 

  17. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  18. Do BC, Thi-Thu D, Berrin J, Haltrich D, Kim-Ahn T, Sigoillot J, Yamabhai M (2009) Cloning, expression in Pichia pastoris, and characterisation of a thermostable GH5 endo-1,4-β-mannosidase from Aspergillus niger BK01. Microb Cell Fact 8:59

    Article  Google Scholar 

  19. Duruksu G, Ozturk B, Biely P, Bakir U, Ogel Z (2009) Cloning, expression and characterization of endo-β-1,4-mannanase from Aspergillus fumigatus in Aspergillus sojae and Pichia pastoris. Biotechnol Prog 25:271–276

    Article  CAS  Google Scholar 

  20. Kim TR, Goto Y, Hirota N, Dawata K, Denton H, Wu SY, Sawyer L, Batt CA (1997) High-level expression of bovine β-lactoglobulin in Pichia pastoris and characterization of its physical properties. Protein Eng 10:1339–1345

    Article  CAS  Google Scholar 

  21. Kim DY, Ham S-J, Lee HJ, Kim Y-J, Shin D-H, Rhee YH, Son K-H, Park H-Y (2011) A highly active endo-β-1, 4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb Technol 48:365–370

    Article  CAS  Google Scholar 

  22. Hatada Y, Takeda N, Hirasawa K, Ohta Y, Usami R, Yoshida Y (2005) Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9:497–500

    Article  CAS  Google Scholar 

  23. Takeda N, Hirasawa K, Uchimura K, Nogi Y, Hatada Y, Usami R (2004) Purification and enzymatic properties of a highly alkaline mannanase from alkaliphilic Bacillus sp. strain JAMB-750. J Biol Macromol 4:67–74

    CAS  Google Scholar 

  24. Vu TT, Quyen DT, Dao TT, Nguyen Sle T (2012) Cloning, high-level expression, purification, and properties of a novel endo-beta-1,4-mannanase from Bacillus subtilis G1 in Pichia pastoris. J Microbiol Biotechnol 22:331–338

    Article  CAS  Google Scholar 

  25. Qiao J, Rao Z, Dong B, Cao Y (2010) Expression of Bacillus subtilis MA139 β-mannanase in Pichia pastoris and the enzyme characterization. Appl Biochem Biotechnol 160:1362–1370

    Article  CAS  Google Scholar 

  26. Lv J, Chen Y, Pei H, Yang W, Li Z, Dong B, Cao Y (2013) Cloning, expression, and characterization of β-mannanase from Bacillus subtilis MAFIC-S11 in Pichia pastoris. Appl Biochem Biotechnol 169:2326–2340

    Article  CAS  Google Scholar 

  27. Song JM, Nam KW, Kang SG, Kim CG, Kwon ST, Lee YH (2008) Molecular cloning and characterization of a novel cold-active β-1,4-β-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Comp Biochem Physiol B 151:32–40

    Article  Google Scholar 

  28. Mendoza NS, Arai M, Kawaguchi T, Yoshida T, Joson LM (1994) Purification and properties of mannanase from Bacillus subtilis. World J Microbiol Biotechnol 10:51–54

    Article  CAS  Google Scholar 

  29. Katrolia P, Zhou P, Zhang P, Yan QJ, Li YN, Jiang ZQ, Xu HB (2012) High level expression of a novel β-mannanase from Chaetomium sp exhibiting efficient mannan hydrolysis. Carbohydr Polym 87:480–490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the state forestry administration project 948 (2012-4-03), National Natural Science Foundation (No.31170553, 30671702, 30170775), excellent creative talents supporting program of Heilongjiang University of Chinese Medicine (No. 2012RCQ13), and the Fundamental Research Funds for the Central Universities (No. DL12CA08).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhao.

Additional information

Huiling Li and Zuyan Liu have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Z., Wang, C. et al. Secretory expression and characterization of a novel thermo-stable, salt-tolerant endo-1,4-β-mannanase of Bacillus subtilis WD23 by Pichia pastoris . Eur Food Res Technol 240, 671–677 (2015). https://doi.org/10.1007/s00217-014-2369-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2369-7

Keywords

Navigation