Skip to main content
Log in

Advances in D-dimer testing: progress in harmonization of clinical assays and innovative detection methods

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The D-dimer is a sensitive indicator of coagulation and fibrinolysis activation, especially valuable as a biomarker of intravascular thrombosis. Measurement of plasma D-dimer levels plays a crucial role in the diagnosis and monitoring of conditions such as deep vein thrombosis, pulmonary embolism, and disseminated intravascular coagulation. A variety of immunoassays, including enzyme-linked immunosorbent assays, latex-enhanced immunoturbidimetric assays, whole-blood aggregation analysis, and immunochromatography assays, are widely used in clinical settings to determine D-dimer levels. However, the results obtained from different D-dimer assays vary significantly. These assays exhibit intra-method coefficients of variation ranging from 6.4% to 17.7%, and the measurement discrepancies among different assays can be as high as 20-fold. The accuracy and reliability of D-dimer testing cannot be guaranteed due to the lack of an internationally endorsed reference measurement system (including reference materials and reference measurement procedures), which may lead to misdiagnosis and underdiagnosis, limiting its full clinical application. In this review, we present an in-depth analysis of clinical D-dimer testing, summarizing the existing challenges, the current state of metrology, and progress towards harmonization. We also review the latest advancements in D-dimer detection techniques, which include mass spectrometry and electrochemical and optical immunoassays. By comparing the basic principles, the definition of the measurand, and analytical performance of these methods, we provide an outlook on the potential improvements in D-dimer clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weitz JI, Fredenburgh JC, Eikelboom JW. A Test in Context: D-Dimer. J Am Coll Cardiol. 2017;70(19):2411–20.

    Article  CAS  PubMed  Google Scholar 

  2. Riley RS, Gilbert AR, Dalton JB, Pai S, McPherson RA. Widely Used Types and Clinical Applications of D-Dimer Assay. Lab Med. 2016;47(2):90–102.

    Article  PubMed  Google Scholar 

  3. Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts and future prospects. Blood. 2009;113(13):2878–87.

    Article  CAS  PubMed  Google Scholar 

  4. Hoeprich PD, Doolittle RF. Dimeric half-molecules of human fibrinogen are joined through disulfide bonds in an antiparallel orientation. Biochemistry. 1983;22(9):2049–55.

    Article  CAS  PubMed  Google Scholar 

  5. Tasic N, Paixao T, Goncalves LM. Biosensing of D-dimer, making the transition from the central hospital laboratory to bedside determination. Talanta. 2020;207: 120270.

    Article  CAS  PubMed  Google Scholar 

  6. Walker JB, Nesheim ME. The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. Journal of Biological Chemistry. 1999;274(8):5201–12.

    Article  CAS  PubMed  Google Scholar 

  7. Weisel JW, Veklich Y, Collet JP, Francis CW. Structural studies of fibrinolysis by electron and light microscopy. Thrombosis and Haemostasis. 1999;82(2):277–82.

    CAS  PubMed  Google Scholar 

  8. Favresse J, Lippi G, Roy P-M, Chatelain B, Jacqmin H, ten Cate H, et al. D-dimer: Preanalytical, analytical, postanalytical variables, and clinical applications. Critical Reviews in Clinical Laboratory Sciences. 2018;55(8):548–77.

    Article  CAS  PubMed  Google Scholar 

  9. Johnson ED, Schell JC, Rodgers GM. The D-dimer assay. American Journal of Hematology. 2019;94(7):833–9.

    Article  PubMed  Google Scholar 

  10. Hillyard CJ, Blake AS, Wilson K, Rylatt DB, Miles S, Bunch R, et al. A latex agglutination assay for D-dimer - evaluation and application to the diagnosis of thrombotic disease. 1987;33(10):1837–40.

    Article  CAS  PubMed  Google Scholar 

  11. Rowbotham BJ, Carroll P, Whitaker AN, Bunce IH, Cobcroft RG, Elms MJ, et al. Measurement of cross-linked fibrin derivatives - use in the diagnosis of venous thrombosis. Thrombosis and Haemostasis. 1987;57(1):59–61.

    Article  CAS  PubMed  Google Scholar 

  12. Dempfle C-E. Validation, calibration, and specificity of quantitative D-dimer assays. Seminars in vascular medicine. 2005;5(4):315–20.

    Article  PubMed  Google Scholar 

  13. Tripodi A. D-dimer testing in laboratory practice. Clin Chem. 2011;57(9):1256–62.

    Article  CAS  PubMed  Google Scholar 

  14. Whitaker AN, Rowe EA, Masci PP, Gaffney PJ. Identification of D-dimer-E complex in disseminated intravascular coagulation. Thrombosis Research. 1980;18(3–4):453–9.

    Article  CAS  PubMed  Google Scholar 

  15. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020;18(4):844–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. Journal of Thrombosis and Haemostasis. 2020;18(6):1324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oudkerk M, Buller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud T, et al. Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. Radiology. 2020;297(1):E216–22.

    Article  PubMed  Google Scholar 

  18. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis. 2020;18(5):1094–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu B, Li X, Chen J, Ouyang M, Zhang H, Zhao X, et al. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis. Journal of Thrombosis and Thrombolysis. 2020;50(3):548–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Linkins LA, Lapner ST. Review of D-dimer testing: Good, Bad, and Ugly. International Journal of Laboratory Hematology. 2017;39:98–103.

    Article  PubMed  Google Scholar 

  21. Gerber JL, Messmer AS, Krebs T, Muller M, Hofer DM, Pfortmueller CA. Utility and limitations of patient-adjusted D-dimer cut-off levels for diagnosis of venous thromboembolism-A systematic review and meta-analysis. J Intern Med. 2023;294(1):110–20.

    Article  CAS  PubMed  Google Scholar 

  22. Geersing GJ, Janssen KJ, Oudega R, Bax L, Hoes AW, Reitsma JB, et al. Excluding venous thromboembolism using point of care D-dimer tests in outpatients: a diagnostic meta-analysis. BMJ. 2009;339: b2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meijer P, Haverkate F, Kluft C, de Moerloose P, Verbruggen B, Spannagl M. A model for the harmonisation of test results of different quantitative D-dimer methods. Thromb Haemost. 2006;95(3):567–72.

    Article  CAS  PubMed  Google Scholar 

  24. CGL-A Coagulation Limited Proficiency Testing Survey, Participant Summary. College of American Pathologists, Northfield, IL, USA,. 2014:44–6.

  25. Olson JD. D-dimer: An Overview of Hemostasis and Fibrinolysis, Assays, and Clinical Applications. Adv Clin Chem. 2015;69:1–46.

    Article  CAS  PubMed  Google Scholar 

  26. Thachil J, Longstaff C, Favaloro EJ, Lippi G, Urano T, Kim PY, et al. The need for accurate D-dimer reporting in COVID-19: Communication from the ISTH SSC on fibrinolysis. J Thromb Haemost. 2020;18(9):2408–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mullier F, Vanpee D, Jamart J, Dubuc E, Bailly N, Douxfils J, et al. Comparison of five D-dimer reagents and application of an age-adjusted cut-off for the diagnosis of venous thromboembolism in emergency department. Blood Coagulation & Fibrinolysis. 2014;25(4):309–15.

    Article  CAS  Google Scholar 

  28. Kahler ZP, Kline JA. Standardizing the D-dimer Assay: Proposing the D-dimer International Managed Ratio. Clin Chem. 2015;61(5):776–8.

    Article  CAS  PubMed  Google Scholar 

  29. Gris J-C, Quere I, Perez-Martin A, Lefrant J-Y, Sotto A. Uncertainties on the prognostic value of D-dimers in COVID-19 patients. Journal of Thrombosis and Haemostasis. 2020;18(8):2066–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rylatt DB, Blake AS, Cottis LE, Massingham DA, Fletcher WA, Masci PP, et al. An immunoassay for human D-dimer using monoclonal-antibodies. Thrombosis Research. 1983;31(6):767–78.

    Article  CAS  PubMed  Google Scholar 

  31. Longstaff C, Adcock D, Olson JD, Jennings I, Kitchen S, Mutch N, et al. Harmonisation of D-dimer - A call for action. Thromb Res. 2016;137:219–20.

    Article  CAS  PubMed  Google Scholar 

  32. Wauthier L, Favresse J, Hardy M, Douxfils J, Le Gal G, Roy PM, et al. D-dimer testing: A narrative review. Advances in clinical chemistry. 2023;114:151–223.

    Article  CAS  PubMed  Google Scholar 

  33. Gosselin RC, Owings JT, Jacoby RC, Larkin EC. Evaluation of a new automated quantitative d-dimer, Advanced D-Dimer, in patients suspected of venous thromboembolism. Blood Coagulation & Fibrinolysis. 2002;13(4):323–30.

    Article  CAS  Google Scholar 

  34. Courtney DM, Steinberg JM, McCormick JC. Prospective diagnostic accuracy assessment of the HemosIL HS D-dimer to exclude pulmonary embolism in emergency department patients. Thrombosis Research. 2010;125(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  35. D CH, M M, R Z. Evaluation of the Innovance D-DIMER analytical performance. Clin Chem Lab Med 2009;47(8):945-51.

  36. Waser G, Kathriner S, Wuillemin WA. Performance of the automated and rapid STA Liatest D-dimer on the STA-R analyzer. Thromb Res. 2005;116(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  37. Lindahl TL, Lundahl TH, Fransson SG. Evaluation of an automated micro-latex D-dimer assay (Tina-quant (R) on Hitachi 911 analyser) in symptomatic outpatients with suspected DVT. Thrombosis and Haemostasis. 1999;82(6):1772–3.

    Article  CAS  PubMed  Google Scholar 

  38. Bounameaux H, Demoerloose P, Perrier A, Reber G. Plasma measurement of D-Dimer as diagnostic-aid in suspected venous thromboembolism - an overview. Thrombosis and Haemostasis. 1994;71(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  39. Mountain D, Jacobs I, Haig A. The VIDAS D-dimer test for venous thromboembolism: a prospective surveillance study shows maintenance of sensitivity and specificity when used in normal clinical practice. American Journal of Emergency Medicine. 2007;25(4):464–71.

    Article  PubMed  Google Scholar 

  40. de Moerloose P, Reber G, Arnout J. Evaluation of a new quantitative highly sensitive D-dimer assay for exclusion of venous thromboembolism. Journal of Thrombosis and Haemostasis. 2009;7(9):1590–1.

    Article  PubMed  Google Scholar 

  41. Bucek RA, Quehenberger P, Feliks I, Handler S, Reiter M, Minar E. Results of a new rapid D-dimer assay (Cardiac D-dimer) in the diagnosis of deep vein thrombosis. Thrombosis Research. 2001;103(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  42. Rooney KD, Schilling UM. Point-of-care testing in the overcrowded emergency department - can it make a difference? Critical Care. 2014;18(6).

  43. Marquardt U, Apau D. Point-of-care D-dimer testing in emergency departments. Emergency nurse : the journal of the RCN Accident and Emergency Nursing Association. 2015;23(5):29–35.

    Article  PubMed  Google Scholar 

  44. Bates SM. D-Dimer Assays in Diagnosis and Management of Thrombotic and Bleeding Disorders. Seminars in Thrombosis and Hemostasis. 2012;38(7):673–82.

    Article  CAS  PubMed  Google Scholar 

  45. Gaffney PJ, Joe F. Lysis of crosslinked human fibrin by plasmin yields initially a single molecular-complex. D DIMER-E Thrombosis Research. 1979;15(5–6):673–87.

    Article  CAS  PubMed  Google Scholar 

  46. Francis CW, Marder VJ, Martin SE, Barlow GH.Plasmic degradation of crosslinked fibrin - characterization of new macromolecular soluble complexes and a model of their structure. Circulation. 1980;62(4):285-.

  47. Dempfle CE, Zips S, Ergul H, Heene DL, Grp FS. The fibrin assay comparison trial (FACT): Correlation of soluble fibrin assays with D-dimer. Thrombosis and Haemostasis. 2001;86(5):1204–9.

    CAS  PubMed  Google Scholar 

  48. Brenner B, Francis CW, Marder VJ. The role of soluble cross-linked fibrin in D-dimer immunoreactivity of plasmic digests. Journal of Laboratory and Clinical Medicine. 1989;113(6):682–8.

    CAS  PubMed  Google Scholar 

  49. Kogan AE, Mukharyamova KS, Bereznikova AV, Filatov VL, Koshkina EV, Bloshchitsyna MN, et al. Monoclonal antibodies with equal specificity to D-dimer and high-molecular-weight fibrin degradation products. Blood Coagul Fibrinolysis. 2016;27(5):542–50.

    Article  CAS  PubMed  Google Scholar 

  50. Dempfle CE. D-dimer: standardization versus harmonization. Thromb Haemost. 2006;95(3):399–400.

    Article  CAS  PubMed  Google Scholar 

  51. Bevan S, Longstaff C. Is it possible to make a common reference standard for D-dimer measurements? Communication from the ISTH SSC Subcommittee on Fibrinolysis. J Thromb Haemost. 2022;20(2):498–507.

    Article  CAS  PubMed  Google Scholar 

  52. Lippi G, Tripodi A, Simundic AM, Favaloro EJ. International survey on D-dimer test reporting: a call for standardization. Semin Thromb Hemost. 2015;41(3):287–93.

    Article  CAS  PubMed  Google Scholar 

  53. Favaloro EJ, Jennings I, Olson J, Van Cott EM, Bonar R, Gosselin R, et al. Towards harmonization of external quality assessment/proficiency testing in hemostasis. Clin Chem Lab Med. 2018;57(1):115–26.

    Article  PubMed  Google Scholar 

  54. Panteghini M, Braga F. Implementation of metrological traceability in laboratory medicine: where we are and what is missing. Clinical Chemistry and Laboratory Medicine. 2020;58(8):1200–4.

    Article  CAS  PubMed  Google Scholar 

  55. ISO. International Organzation for Standardization. In vitro diagnostic medical devices—requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples. ISO 17511. 2020.

  56. ISO. International Organzation for Standardization. In vitro diagnostic medical devices—measurement of quantities in samples of biological origin—requirements for international harmonization protocols establishing metrological traceability of values assigned to calibrators and human samples. ISO 21151. 2020.

  57. Michiels JJ, Palareti G, de Moerloose P. Fibrin D-dimer testing for venous and arterial thrombotic disease. Seminars in vascular medicine. 2005;5(4):311–4.

    Article  PubMed  Google Scholar 

  58. Meijer P, Kluft C. The harmonization of quantitative test results of different D-dimer methods. Seminars in vascular medicine. 2005;5(4):321–7.

    Article  CAS  PubMed  Google Scholar 

  59. Gaffney PJ, Edgell T, Creightonkempsford LJ, Wheeler S, Tarelli E. Fibrin Degradation Product (FNDP) Assays - Analysis of Standardization issues and Target Antigens in Plasma. British Journal of Haematology. 1995;90(1):187–94.

    Article  CAS  PubMed  Google Scholar 

  60. Nieuwenhuizen W. A reference material for harmonisation of D-dimer assays. Thrombosis and Haemostasis. 1997;77(5):1031–3.

    Article  CAS  PubMed  Google Scholar 

  61. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nature Biotechnology. 2009;27(7):633-U85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gajula SNR, Khairnar AS, Jock P, Kumari N, Pratima K, Munjal V, et al. LC-MS/MS: A sensitive and selective analytical technique to detect COVID-19 protein biomarkers in the early disease stage. Expert Rev Proteomics. 2023;20(1–3):5–18.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu Y, Deng P, Zhong D. Derivatization methods for LC-MS analysis of endogenous compounds. Bioanalysis. 2015;7(19):2557–81.

    Article  CAS  PubMed  Google Scholar 

  64. Yuan Z-C, Hu B. Mass Spectrometry-Based Human Breath Analysis: Towards COVID-19 Diagnosis and Research. Journal of analysis and testing. 2021;5(4):287–97.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  65. Xiao P, Li H, Li X, Song D. Analytical barriers in clinical B-type natriuretic peptide measurement and the promising analytical methods based on mass spectrometry technology. Clin Chem Lab Med. 2019;57(7):954–66.

    Article  CAS  PubMed  Google Scholar 

  66. Pan M, Lu Y, Feng L, Zhou X, Xiong J, Li H. Absolute Quantification of Total Hemoglobin in Whole Blood by High-Performance Liquid Chromatography Isotope Dilution Inductively Coupled Plasma-Mass Spectrometry. Anal Chem. 2022;94(34):11753–9.

    Article  CAS  PubMed  Google Scholar 

  67. Feng L, Huo Z, Xiong J, Li H. Certification of Amyloid-Beta (Abeta) Certified Reference Materials by Amino Acid-Based Isotope Dilution High-Performance Liquid Chromatography Mass Spectrometry and Sulfur-Based High-Performance Liquid Chromatography Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Anal Chem. 2020;92(19):13229–37.

    Article  CAS  PubMed  Google Scholar 

  68. Josephs RD, Martos G, Li M, Wu L, Melanson JE, Quaglia M, et al. Establishment of measurement traceability for peptide and protein quantification through rigorous purity assessment-a review. Metrologia. 2019;56(4).

  69. Chen YZ, Teo HL, Liu H, Loh TP, Liu QD, Teo TL, et al. Simple and accurate candidate reference measurement procedure for total testosterone in human serum by one-step liquid-liquid extraction coupled with isotope dilution mass spectrometry. Analytical and Bioanalytical Chemistry. 2019;411(28):7519–28.

    Article  PubMed  Google Scholar 

  70. Lin HB, Liu D, Deng L, Yan J, Han LQ, Zhan M, et al. Development of matrix-based reference materials for 17 beta-estradiol by the recommended reference method of ID-LC-MS/MS. Analytical and Bioanalytical Chemistry. 2023;415(23):5637–44.

    Article  CAS  PubMed  Google Scholar 

  71. Lee H, Park CJ, Lee G. Measurement of progesterone in human serum by isotope dilution liquid chromatography-tandem mass spectrometry and comparison with the commercial chemiluminescence immunoassay. Analytical and Bioanalytical Chemistry. 2010;396(5):1713–9.

    Article  CAS  PubMed  Google Scholar 

  72. Liu Y, Song D, Xu B, Li H, Dai X, Chen B. Development of a matrix-based candidate reference material of total homocysteine in human serum. Anal Bioanal Chem. 2017;409(13):3329–35.

    Article  CAS  PubMed  Google Scholar 

  73. Teo TL, Lippa KA, Mackay L, Yong S, Liu QD, Camara JE, et al. Enhancing the accuracy of measurement of small molecule organic biomarkers. Analytical and Bioanalytical Chemistry. 2019;411(28):7341–55.

    Article  CAS  PubMed  Google Scholar 

  74. Kuhn E, Addona T, Keshishian H, Burgess M, Mani DR, Lee RT, et al. Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. Clin Chem. 2009;55(6):1108–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pritchard C, Groves KJ, Biesenbruch S, O’Connor G, Ashcroft AE, Arsene C, et al. Quantification of human growth hormone in serum with a labeled protein as an internal standard: essential considerations. Anal Chem. 2014;86(13):6525–32.

    Article  CAS  PubMed  Google Scholar 

  76. Wang W. Identification of respective lysine donor and glutamine acceptor sites involved in factor XIIIa-catalyzed fibrin alpha chain cross-linking. J Biol Chem. 2011;286(52):44952–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang W, Walker ND, Zhu LJ, Wu W, Ge L, Gutstein DE, et al. Quantification of circulating D-dimer by peptide immunoaffinity enrichment and tandem mass spectrometry. Anal Chem. 2012;84(15):6891–8.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang N, An J, Qin H, Wang Y, Fang Z, Ji Y, et al. A Mass-Spectrometry-Based Antibody-Free Approach Enables the Quantification of D-Dimer in Plasma. J Proteome Res. 2020;19(8):3143–52.

    Article  CAS  PubMed  Google Scholar 

  79. Gao Y-Z, Zhang L, Huo W-S, Shi S, Lian J, Gao Y-H. An integrated giant magnetoresistance microfluidic immuno-sensor for rapid detection and quantification of D-dimer. Chinese Journal of Analytical Chemistry. 2015;43(6):802–7.

    Article  CAS  Google Scholar 

  80. Ruivo S, Azevedo AM, Prazeres DMF. Colorimetric detection of D-dimer in a paper-based immunodetection device. Analytical Biochemistry. 2017;538:5–12.

    Article  CAS  PubMed  Google Scholar 

  81. Koukouvinos G, Petrou P, Misiakos K, Drygiannakis D, Raptis I, Stefanitsis G, et al. Simultaneous determination of CRP and D-dimer in human blood plasma samples with White Light Reflectance Spectroscopy. Biosens Bioelectron. 2016;84:89–96.

    Article  CAS  PubMed  Google Scholar 

  82. Chebil S, Macauley N, Hianik T, Korri-Youssoufi H. Multiwalled Carbon Nanotubes Modified by NTA-Copper Complex for Label-Free Electrochemical Immunosensor Detection. Electroanalysis. 2013;25(3):636–43.

    Article  CAS  Google Scholar 

  83. Gamella M, Campuzano S, Conzuelo F, Julio Reviejo A, Pingarron JM. Amperometric Magnetoimmunosensors for Direct Determination of D-Dimer in Human Serum. Electroanalysis. 2012;24(12):2235–43.

    Article  CAS  Google Scholar 

  84. Ibupoto ZH, Jamal N, Khun K, Liu X, Willander M. A potentiometric immunosensor based on silver nanoparticles decorated ZnO nanotubes, for the selective detection of d-dimer. Sensors and Actuators B-Chemical. 2013;182:104–11.

    Article  CAS  Google Scholar 

  85. Nikoleli G-P, Nikolelis DP, Tzamtzis N, Psaroudakis N. A Selective Immunosensor for D-dimer Based on Antibody Immobilized on a Graphene Electrode with Incorporated Lipid Films. Electroanalysis. 2014;26(7):1522–7.

    Article  CAS  Google Scholar 

  86. Chebil S, Hafaiedh I, Sauriat-Dorizon H, Jaffrezic-Renault N, Errachid A, Ali Z, et al. Electrochemical detection of D-dimer as deep vein thrombosis marker using single-chain D-dimer antibody immobilized on functionalized polypyrrole. Biosensors & Bioelectronics. 2010;26(2):736–42.

    Article  CAS  Google Scholar 

  87. Zhang C, Xu J-Q, Li Y-T, Huang L, Pang D-W, Ning Y, et al. Photocatalysis-Induced Renewable Field-Effect Transistor for Protein Detection. Analytical Chemistry. 2016;88(7):4048–54.

    Article  CAS  PubMed  Google Scholar 

  88. Wang J, Lu Y, Zhang Y, Ning Y, Zhang G-J. Graphene Oxide-Assisted Surface Plasmon Resonance Biosensor for Simple and Rapid Determination of D-Dimer in Plasma. Journal of Nanoscience and Nanotechnology. 2016;16(7):6878–83.

    Article  CAS  Google Scholar 

  89. Zhao G, Du Y, Zhang N, Li C, Ma H, Wu D, et al. Dual-quenching mechanisms in electrochemiluminescence immunoassay based on zinc-based MOFs of ruthenium hybrid for D-dimer detection. Anal Chim Acta. 2023;1253: 341076.

    Article  CAS  PubMed  Google Scholar 

  90. Vasquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Analytical and Bioanalytical Chemistry. 2023;415(6):1003–31.

    Article  CAS  PubMed  Google Scholar 

  91. Tasić N, Cavalcante L, Deffune E, Góes MS, Paixão TRLC, Gonçalves LM. Probeless and label-free impedimetric biosensing of D-dimer using gold nanoparticles conjugated with dihexadecylphosphate on screen-printed carbon electrodes. Electrochimica Acta. 2021;397.

  92. Tortolini C, Gigli V, Angeloni A, Galantini L, Tasca F, Antiochia R. Disposable Voltammetric Immunosensor for D-Dimer Detection as Early Biomarker of Thromboembolic Disease and of COVID-19 Prognosis. Biosensors (Basel). 2022;13(1).

  93. Wu H, Zhao M, Li J, Zhou X, Yang T, Zhao D, et al. Novel Protease-Free Long-Lasting Chemiluminescence System Based on the Dox-ABEI Chimeric Magnetic DNA Hydrogel for Ultrasensitive Immunoassay. ACS Appl Mater Interfaces. 2020;12(42):47270–7.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang X, Jia Y, Feng R, Wu T, Zhang N, Du Y, et al. Cucurbituril Enhanced Electrochemiluminescence of Gold Nanoclusters via Host-Guest Recognition for Sensitive D-Dimer Sensing. Anal Chem. 2023;95(2):1461–9.

    CAS  PubMed  Google Scholar 

  95. Ibupoto ZH, Mitrou N, Nikoleli G-P, Nikolelis DP, Willander M, Psaroudakis N. The Development of Highly Sensitive and Selective Immunosensor Based on Antibody Immobilized ZnO Nanorods for the Detection of D-Dimer. Electroanalysis. 2014;26(2):292–8.

    Article  CAS  Google Scholar 

  96. Wei Y, Zhang J, Yang X, Wang Z, Wang J, Qi H, et al. Washing-free electrogenerated chemiluminescence magnetic microbiosensors based on target assistant proximity hybridization for multiple protein biomarkers. Anal Chim Acta. 2023;1253: 340926.

    Article  CAS  PubMed  Google Scholar 

  97. Wei Y, Wang Y, Wang J, Yang X, Qi H, Gao Q, et al. Homogeneous electrogenerated chemiluminescence immunoassay for the detection of biomarkers by magnetic preconcentration on a magnetic electrode. Anal Bioanal Chem. 2019;411(18):4203–11.

    Article  CAS  PubMed  Google Scholar 

  98. Li S, Jiang Y, Eda S, Wu JJ. Low-Cost and Desktop-Fabricated Biosensor for Rapid and Sensitive Detection of Circulating D-Dimer Biomarker. IEEE Sensors Journal. 2019;19(4):1245–51.

    Article  ADS  CAS  Google Scholar 

  99. Pereira CF, Sales MGF, Frasco MF. A molecularly imprinted photonic polymer based on an inverse opal structure for sensing D-dimer at the point-of-care. Talanta. 2022;243: 123387.

    Article  CAS  PubMed  Google Scholar 

  100. Nechaeva NL, Sorokina ON, Konstantinova TS, Vasilyeva AD, Yurina LV, Byzova NA, et al. Simultaneous express immunoassay of multiple cardiac biomarkers with an automatic platform in human plasma. Talanta. 2021;224: 121860.

    Article  CAS  PubMed  Google Scholar 

  101. Yildirim-Tirgil N. Development of aptamer-based ELISA method for d-dimer detection. Biotechnol Appl Biochem. 2022.

  102. Tanak AS, Sardesai A, Muthukumar S, Prasad S. Simultaneous detection of sepsis host response biomarkers in whole blood using electrochemical biosensor. Bioeng Transl Med. 2022;7(3): e10310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Byzova NA, Vengerov YY, Voloshchuk SG, Zherdev AV, Dzantiev ABB. Development of A Lateral Flow Highway: Ultra-Rapid Multitracking Immunosensor for Cardiac Markers. Sensors (Basel). 2019;19(24):5494.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant no. 2022YFF0710301) and National Platform for Reference Material Resources (grant no. APT2302-1)

Funding

National Platform for Reference Material Resources, APT2302-1, National Key Research and Development Program of China, 2022YFF0710301

Author information

Authors and Affiliations

Authors

Contributions

Rong Zhao and Hongmei Li conceived the idea for the study. Rong Zhao performed the literature search and data analysis, and drafted the paper. Mengran Li performed the literature search. Peng Xiao and Dewei Song revised the paper. Hongmei Li supervised the work, and critically reviewed and revised the paper.

Corresponding author

Correspondence to Hongmei Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Li, M., Xiao, P. et al. Advances in D-dimer testing: progress in harmonization of clinical assays and innovative detection methods. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05207-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05207-x

Keywords

Navigation