Skip to main content

Advertisement

Log in

Electrochemical detection of the neurotransmitter glutamate and the effect of the psychotropic drug riluzole on its oxidation response

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glutamate is the main excitatory neurotransmitter in the brain and plays a leading role in degenerative diseases, such as motor neuron diseases. Riluzole is a glutamate regulator and a therapeutic drug for motor neuron diseases. In this work, the interaction between glutamate and riluzole was studied using cyclic voltammetry and square-wave voltammetry at a glassy carbon electrode (GCE). It was shown that glutamate underwent a two-electron transfer reaction on the GCE surface, and the electrochemical detection limits of glutamate and riluzole were 483 μmol/L and 11.47 μmol/L, respectively. The results confirm that riluzole can promote the redox reaction of glutamate. This work highlights the significance of electrochemical technology in the sensing detection of the interaction between glutamate and related psychotropic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci. 2018;75(16):2917–49.

    Article  PubMed  Google Scholar 

  2. Yang SJ, Kim EA, Chang MJ, et al. N-Adamantyl-4-Methylthiazol-2-amine attenuates glutamate-induced oxidative stress and inflammation in the brain. Neurotox Res. 2017;32(1):107–20.

    Article  CAS  PubMed  Google Scholar 

  3. Hawkins RA. The blood-brain barrier and glutamate. Am J Clin Nutr. 2009;90(3):867S-874S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Broeders TA, Bhogal AA, Morsinkhof LM, et al. Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning. J Psychopharmacol. 2022;36(4):489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int. 2004;45(5):583–95.

    Article  CAS  PubMed  Google Scholar 

  6. Niaz K, Zaplatic E, Spoor J. Extensive use of monosodium glutamate: A threat to public health?. EXCLI J. 2018;17:273–278. Published 2018 Mar 19.

  7. Clarke G, O’Mahony S, Malone G, Dinan TG. An isocratic high performance liquid chromatography method for the determination of GABA and glutamate in discrete regions of the rodent brain [published correction appears in J Neurosci Methods. 2007 Sep 30;165(2):320]. J Neurosci Methods. 2007;160(2):223–230.

  8. Doong RA, Shih HM. Array-based titanium dioxide biosensors for ratiometric determination of glucose, glutamate and urea. Biosens Bioelectron. 2010;25(6):1439–46.

    Article  CAS  PubMed  Google Scholar 

  9. Andersen JV, Markussen KH, Jakobsen E, et al. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021;196:108719.

    Article  CAS  PubMed  Google Scholar 

  10. Castillo J, Dávalos A, Naveiro J, Noya M. Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke. 1996;27(6):1060–5.

    Article  CAS  PubMed  Google Scholar 

  11. Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF. Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl. 1996;67:40–4.

    CAS  PubMed  Google Scholar 

  12. Andreadou E, Kapaki E, Kokotis P, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis. In Vivo. 2008;22(1):137–41.

    CAS  PubMed  Google Scholar 

  13. Stragierowicz J, Daragó A, Brzeźnicki S, Kilanowicz A. Optimization of ultra-performance liquid chromatography (UPLC) with fluorescence detector (FLD) method for the quantitative determination of selected neurotransmitters in rat brain. Optimization of ultra-performance liquid chromatography (UPLC) with fluorescence detector (FLD) method for the quantitative determination of selected neurotransmitters in rat brain. Med Pr. 2017;68(5):583–91.

    PubMed  Google Scholar 

  14. Campos CDM, Reyes FGR, Manz A, da Silva JAF. On-line electroextraction in capillary electrophoresis: Application on the determination of glutamic acid in soy sauces. Electrophoresis. 2019;40(2):322–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kim S, Okazaki S, Otsuka I, et al. Searching for biomarkers in schizophrenia and psychosis: Case-control study using capillary electrophoresis and liquid chromatography time-of-flight mass spectrometry and systematic review for biofluid metabolites. Neuropsychopharmacol Rep. 2022;42(1):42–51.

    Article  CAS  PubMed  Google Scholar 

  16. Lorenzo MP, Valiente L, Buendia I, Gortázar AR, Garcia A. Optimization and validation of a chiral CE-LIF method for quantitation of aspartate, glutamate and serine in murine osteocytic and osteoblastic cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1152:122259.

    Article  CAS  PubMed  Google Scholar 

  17. Moroz LL, Sohn D, Romanova DY, Kohn AB. Microchemical identification of enantiomers in early-branching animals: Lineage-specific diversification in the usage of D-glutamate and D-aspartate. Biochem Biophys Res Commun. 2020;527(4):947–52.

    Article  CAS  PubMed  Google Scholar 

  18. Ta HY, Collin F, Perquis L, Poinsot V, Ong-Meang V, Couderc F. Twenty years of amino acid determination using capillary electrophoresis: A review. Anal Chim Acta. 2021;1174:338233.

    Article  CAS  PubMed  Google Scholar 

  19. Qu WJ, Liu T, Chai Y, et al. Efficient detection of L-aspartic acid and L-glutamic acid by self-assembled fluorescent microparticles with AIE and FRET activities. Org Biomol Chem. 2023;21(19):4022–4027. Published 2023 May 17.

  20. Xu Z, Ruisong W, Ligong C. Glucosamine modified near-infrared cyanine as a sensitive colorimetric fluorescent chemosensor for aspartic and glutamic acid and its applications. New J Chem. 2014;38(10):4791–8.

    Article  Google Scholar 

  21. Ohkuma M, Kaneda M, Yoshida S, Fukuda A, Miyachi E. Optical measurement of glutamate in slice preparations of the mouse retina. Neurosci Res. 2018;137:23–9.

    Article  CAS  PubMed  Google Scholar 

  22. Amouzadeh Tabrizi M. A facile method for the fabrication of the microneedle electrode and its application in the enzymatic determination of glutamate. Biosensors (Basel). 2023;13(8):828. Published 2023 Aug 18.

  23. Bermingham KP, Doran MM, Bolger FB, Lowry JP. Design optimisation and characterisation of an amperometric glutamate oxidase-based composite biosensor for neurotransmitter l-glutamic acid. Anal Chim Acta. 2022;1224:340205.

    Article  CAS  PubMed  Google Scholar 

  24. Maity D, Kumar RTR. Highly sensitive amperometric detection of glutamate by glutamic oxidase immobilized Pt nanoparticle decorated multiwalled carbon nanotubes(MWCNTs)/polypyrrole composite. Biosens Bioelectron. 2019;130:307–14.

    Article  CAS  PubMed  Google Scholar 

  25. Özel RE, Ispas C, Ganesana M, Leiter JC, Andreescu S. Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments. Biosens Bioelectron. 2014;52:397–402.

    Article  PubMed  Google Scholar 

  26. Liang B, Zhang S, Lang Q, Song J, Han L, Liu A. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase. Anal Chim Acta. 2015;884:83–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Gomes SP, Doležalová J, Araújo AN, et al. Glutamate sol-gel amperometric biosensor based on co-immobilised NADP+ and glutamate dehydrogenase. J Anal Chem. 2013;68:794–800.

    Article  CAS  Google Scholar 

  28. Martínez-Periñán E, Domínguez-Saldaña A, Villa-Manso AM, Gutiérrez-Sánchez C, Revenga-Parra M, Mateo-Martí E, Pariente F, Lorenzo E. Azure A embedded in carbon dots as NADH electrocatalyst: development of a glutamate electrochemical biosensor. Sensors Actuators B: Chem. 2023;374:132761.

    Article  Google Scholar 

  29. Zhenqing D, Junli G, Tiantian S, Jinfeng W, Zhida G, Yanyan S. Nature-inspired mineralization of a wood membrane as a sensitive electrochemical sensing device for in situ recognition of chiral molecules. Green Chem. 2021;23:8685–93.

    Article  Google Scholar 

  30. Hughes G, Pemberton RM, Fielden PR, Hart JP. Trends Anal Chem. 2016;79:106–13.

    Article  CAS  Google Scholar 

  31. Jörissen L. Bifunctional oxygen/air electrodes. J Power Sources. 2006;155(1):23–32.

    Article  Google Scholar 

  32. Abdel-Aziz AM, Hassan HH, Badr IHA. Activated glassy carbon electrode as an electrochemical sensing platform for the determination of 4-nitrophenol and dopamine in real samples. ACS Omega. 2022;7(38):34127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zarate CA, Manji HK. Riluzole in psychiatry: a systematic review of the literature. Expert Opin Drug Metab Toxicol. 2008;4(9):1223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Groeneveld GJ, van Kan HJ, Lie-A-Huen L, Guchelaar HJ, van den Berg LH. An association study of riluzole serum concentration and survival and disease progression in patients with ALS. Clin Pharmacol Ther. 2008;83(5):718–22.

    Article  CAS  PubMed  Google Scholar 

  35. Zarate CA Jr, Quiroz JA, Singh JB, et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry. 2005;57(4):430–2.

    Article  CAS  PubMed  Google Scholar 

  36. Debove C, Zeisser P, Salzman PM, Powe LK, Truffinet P. The Rilutek (riluzole) Global Early Access Programme: an open-label safety evaluation in the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sanacora G, Kendell SF, Levin Y, et al. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry. 2007;61(6):822–5.

    Article  CAS  PubMed  Google Scholar 

  38. Chéramy A, Barbeito L, Godeheu G, Glowinski J. Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo. Neurosci Lett. 1992;147(2):209–12.

    Article  PubMed  Google Scholar 

  39. Carbone M, Duty S, Rattray M. Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem Int. 2012;60(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  40. Martin D, Thompson MA, Nadler JV. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol. 1993;250(3):473–6.

    Article  CAS  PubMed  Google Scholar 

  41. Du J, Suzuki K, Wei Y, et al. The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology. 2007;32(4):793–802.

    Article  CAS  PubMed  Google Scholar 

  42. Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 2008;578(2–3):171–6.

    Article  CAS  PubMed  Google Scholar 

  43. Heurteaux C, Laigle C, Blondeau N, Jarretou G, Lazdunski M. Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience. 2006;137(1):241–51.

    Article  CAS  PubMed  Google Scholar 

  44. Kumarasamy D, Viswanathan VK, Shetty AP, Pratheep GK, Kanna RM, Rajasekaran S. The role of riluzole in acute traumatic cervical spinal cord injury with incomplete neurological deficit: a prospective, randomised controlled study. Indian J Orthop. 2022;56(12):2160–2168. Published 2022 Oct 5.

  45. Cotinat M, Boquet I, Ursino M, et al. Riluzole for treating spasticity in patients with chronic traumatic spinal cord injury: Study protocol in the phase ib/iib adaptive multicenter randomized controlled RILUSCI trial. PLoS One. 2023;18(1):e0276892. Published 2023 Jan 20.

  46. Atabak N, Saeed KS, Ali SK, Davood F. The effect of Riluzole on neurological outcomes, blood-brain barrier, brain water and neuroinflammation in traumatic brain injury. Brain Disorders. 2022;8:100052.

    Article  Google Scholar 

  47. Obinu MC, Reibaud M, Blanchard V, Moussaoui S, Imperato A. Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence. Mov Disord. 2002;17(1):13–9.

    Article  PubMed  Google Scholar 

  48. Bensimon G, Ludolph A, Agid Y, et al. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain. 2009;132(Pt 1):156–71.

    Article  PubMed  Google Scholar 

  49. Ali MY, Knight D, Howlader MMR. Nonenzymatic electrochemical glutamate sensor using copper oxide nanomaterials and multiwall carbon nanotubes. Biosensors (Basel). 2023;13(2):237. Published 2023 Feb 7.

  50. Chi X, Tang Y, Zeng X. Electrode reactions coupled with chemical reactions of oxygen, water and acetaldehyde in an ionic liquid: new approaches for sensing volatile organic compounds. Electrochim Acta. 2016;216:171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sugiyama K, Watanabe K, Komatsu S, et al. Electropolymerization of azure A and pH sensing using poly(azure A)-modified electrodes. Anal Sci. 2021;37(6):893–6.

    Article  CAS  PubMed  Google Scholar 

  52. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem. 1979;101(1):19–28.

    Article  CAS  Google Scholar 

  53. Alhaji NMI, Mary SSL. Kinetics and mechanism of oxidation of glutamic acid by N-bromophthalimide in aqueous acidic medium. E J Chem. 2011;8(4):1472–7.

    Article  CAS  Google Scholar 

  54. Zhou YQ, Wang NX, Xing Y, et al. Stable acyclic aliphatic solid enols: synthesis, characterization, X-ray structure analysis and calculations. Sci Rep. 2013;3:1058.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mruga D, Soldatkin O, Paliienko K, et al. Optimization of the design and operating conditions of an amperometric biosensor for glutamate concentration measurements in the blood plasma. Electroanalysis. 2021;33(5):1299–307.

    Article  CAS  Google Scholar 

  56. Bensalah N, Neily E, Bedoui A, Ahmad MI. Mineralization of riluzole by heterogeneous fenton oxidation using natural iron catalysts. Catalysts. 2023;13(1):68.

    Article  CAS  Google Scholar 

  57. Atana SEH, Dogan-Topal B, Ozkan AS. Electrochemical characterization and rapid voltammetric determination of riluzole in pharmaceuticals and human serum. Anal Lett. 2011;44(6):976–90.

    Article  Google Scholar 

  58. Nasrollahpour H, Naseri A, Rashidi MR, Khalilzadeh B. Application of green synthesized WO3-poly glutamic acid nanobiocomposite for early stage biosensing of breast cancer using electrochemical approach. Sci Rep. 2021;11(1):23994. Published 2021 Dec 14.

  59. Alan M, Xiaocheng H, Yue Z, Jifang Y, Liying S, Zhenjiang L. An antifouling electrochemical aptasensor based on poly (glutamic acid) and peptide for the sensitive detection of adenosine triphosphate. Microchem J. 2021;168:106365.

    Article  Google Scholar 

  60. González-Aguiñaga E, Pérez-Tavares JA, Patakfalvi R, et al. Amino acid complexes of zirconium in a carbon composite for the efficient removal of fluoride ions from water. Int J Environ Res Public Health. 2022;19(6):3640. Published 2022 Mar 18.

Download references

Acknowledgements

This work was supported by the Zhejiang Province Public Welfare Technology Application Research Project (LGF19E020002) and the National Natural Science Foundation of China (51102152).

Author information

Authors and Affiliations

Authors

Contributions

Tao Yu: Writing—original draft, investigation, data curation, visualization, formal analysis. Jingjie Cui: Conceptualization, resources, data curation, software, formal analysis, supervision, methodology, writing—original draft, project administration. Shaowei Chen: Writing—review & editing.

Corresponding author

Correspondence to Jingjie Cui.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 145 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Cui, J. & Chen, S. Electrochemical detection of the neurotransmitter glutamate and the effect of the psychotropic drug riluzole on its oxidation response. Anal Bioanal Chem 416, 1707–1716 (2024). https://doi.org/10.1007/s00216-024-05175-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05175-2

Keywords

Navigation