Skip to main content

Advertisement

Log in

State of the art and future research directions of materials science applied to electrochemical biosensor developments

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor’s sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNT:

Carbon nanotube

cTnI:

Cardiac troponin I

CV:

Cyclic voltammetry

CVD:

Chemical vapor deposition

DNA:

Deoxyribonucleic acid

DPV:

Differential pulse voltammetry

ELISA:

Enzyme-linked immunosorbent assay

GCE:

Glassy carbon electrode

GQD:

Graphene quantum dot

LDG:

Laser-derived graphene

LOD:

Limit of detection

LSG:

Laser-scribed graphene

MOF:

Metal-organic framework

MWCNT:

Multiwalled carbon nanotube

NP:

Nanoparticle

NW:

Nanowire

PEC:

Photoelectrochemical

PLD:

Pulsed laser deposition

PoC:

Point-of-care

QD:

Quantum dot

R&D:

Research and development

rGO:

Reduced graphene oxide

TMD:

Transition metal dichalcogenide

References

  1. Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. Nat Rev Bioeng. 2023;1(5):346–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - sensor principles and architectures. Sensors (Basel). 2008;8(3):1400–58.

    Article  CAS  PubMed  Google Scholar 

  3. Radhakrishnan R, Suni II, Bever CS, Hammock BD. Impedance biosensors: applications to sustainability and remaining technical challenges. ACS Sustain Chem Eng. 2014;2(7):1649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heydari-Bafrooei E, Ensafi AA. Nanomaterials-based biosensing strategies for biomarkers diagnosis, a review. Biosens Bioelectron: X. 2023;13: 100245.

    CAS  Google Scholar 

  5. Naikoo GA, Awan T, Salim H, Arshad F, Hassan IU, Pedram MZ, et al. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: a critical review. Bioeng transl med. 2022;7(1): e10248.

    Article  CAS  PubMed  Google Scholar 

  6. Veselinovic J, AlMashtoub S, Nagella S, Seker E. Interplay of effective surface area, mass transport, and electrochemical features in nanoporous nucleic acid sensors. Anal Chem. 2020;92(15):10751–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai K-Y, Peng H-F, Huang J-J. Nafion modified electrochemical sensor integrated with a feedback-loop indium-gallium-zinc oxide thin-film transistor for enhancing dopamine detection limit. Sens Actuator A Phys. 2023;354: 114287.

    Article  CAS  Google Scholar 

  8. del Barrio M, Luna-López G, Pita M. Enhancement of biosensors by implementing photoelectrochemical processes. Sensors. 2020;20(11):3281.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zittel HE, Miller FJ. A glassy-carbon electrode for voltammetry. Anal Chem. 1965;37(2):200–3.

    Article  CAS  Google Scholar 

  10. Van der Linden WE, Dieker JW. Glassy carbon as electrode material in electro- analytical chemistry. Anal Chim Acta. 1980;119(1):1–24.

    Article  Google Scholar 

  11. Yi Y, Weinberg G, Prenzel M, Greiner M, Heumann S, Becker S, et al. Electrochemical corrosion of a glassy carbon electrode. Catal Today. 2017;295:32–40.

    Article  CAS  Google Scholar 

  12. Soni I, Kumar P, Sharma S, Kudur JG. A short review on electrochemical sensing of commercial dyes in real samples using carbon paste electrodes. Electrochem. 2021;2(2):274–94.

    Article  CAS  Google Scholar 

  13. Karuwan C, Wisitsoraat A, Phokharatkul D, Sriprachuabwong C, Lomas T, Nacapricha D, et al. A disposable screen printed graphene–carbon paste electrode and its application in electrochemical sensing. RSC Adv. 2013;3(48):25792–9.

    Article  CAS  Google Scholar 

  14. Hayat A, Marty JL. Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors. 2014;14(6):10432–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moya A, Gabriel G, Villa R, Javier del Campo F. Inkjet-printed electrochemical sensors. Curr Opin Electrochem. 2017;3(1):29-39.

  16. Li Q, Zhang J, Li Q, Li G, Tian X, Luo Z, et al. Review of printed electrodes for flexible devices. Front Mater. 2019;5:77.

  17. Colozza N, Kehe K, Dionisi G, Popp T, Tsoutsoulopoulos A, Steinritz D, et al. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens Bioelectron. 2019;129:15–23.

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Wu R, Ling H, Zhao Z, Han W, Shi X, et al. Toward scalable fabrication of electrochemical paper sensor without surface functionalization. npj Flex Electron. 2022;6(1):12.

  19. Ji D, Shi Z, Liu Z, Low SS, Zhu J, Zhang T, et al. Smartphone-based square wave voltammetry system with screen-printed graphene electrodes for norepinephrine detection. Smart Mater Med. 2020;1:1–9.

    Article  Google Scholar 

  20. Kant T, Shrivas K, Tapadia K, Devi R, Ganesan V, Deb MK. Inkjet-printed paper-based electrochemical sensor with gold nano-ink for detection of glucose in blood serum. New J Chem. 2021;45(18):8297–305.

    Article  CAS  Google Scholar 

  21. Li M, Wang L, Liu R, Li J, Zhang Q, Shi G, et al. A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens Bioelectron. 2021;174: 112828.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandes Loguercio L, Thesing A, da Silveira NB, Vasconcellos Lopes B, Kurz Maron G, Machado G, et al. Direct laser writing of poly(furfuryl alcohol)/graphene oxide electrodes for electrochemical determination of ascorbic acid. ChemElectroChem. 2022;9(17): e202200334.

    Article  CAS  Google Scholar 

  23. Kurra N, Jiang Q, Nayak P, Alshareef HN. Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today. 2019;24:81–102.

    Article  CAS  Google Scholar 

  24. Ameku WA, Negahdary M, Lima IS, Santos BG, Oliveira TG, Paixão TRLC, et al. Laser-scribed graphene-based electrochemical sensors: a review. Chemosensors. 2022;10(12):505.

    Article  CAS  Google Scholar 

  25. Curti F, Fortunati S, Knoll W, Giannetto M, Corradini R, Bertucci A, et al. A folding-based electrochemical aptasensor for the single-step detection of the SARS-CoV-2 spike protein. ACS Appl Mater Interfaces. 2022;14(17):19204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simon J, Flahaut E, Golzio M. Overview of carbon nanotubes for biomedical applications. Materials. 2019;12(4):624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu B, Yeasmin S, Liu Y, Cheng L-J. Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes. Sens Actuators B Chem. 2022;354: 131216.

    Article  CAS  Google Scholar 

  28. Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, et al. A review on CNTs-based electrochemical sensors and biosensors: unique properties and potential applications. Crit Rev Anal Chem. 2023:1–24.

  29. Tran HL, Dang VD, Dega NK, Lu S-M, Huang Y-F, Doong R-a. Ultrasensitive detection of breast cancer cells with a lectin-based electrochemical sensor using N-doped graphene quantum dots as the sensing probe. Sens Actuators B Chem. 2022;368:132233.

  30. Zhou B, Guo Z, Lin Z, Zhang L, Jiang B-P, Shen X-C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg Chem Front. 2019;6(5):1116–28.

    Article  CAS  Google Scholar 

  31. Wu R, Yu S, Chen S, Dang Y, Wen S-H, Tang J, et al. A carbon dots-enhanced laccase-based electrochemical sensor for highly sensitive detection of dopamine in human serum. Anal Chim Acta. 2022;1229: 340365.

    Article  CAS  PubMed  Google Scholar 

  32. Kurniawan D, Weng R-J, Chen Y-Y, Rahardja MR, Nanaricka ZC, Chiang W-H. Recent advances in the graphene quantum dot-based biological and environmental sensors. Sens Actuators Rep. 2022;4: 100130.

    Article  Google Scholar 

  33. Tabish TA, Hayat H, Abbas A, Narayan RJ. Graphene quantum dots-based electrochemical biosensing platform for early detection of acute myocardial infarction. Biosensors. 2022;12(2):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang T, Liu Y, Wang H, Duo Y, Zhang B, Ge Y, et al. Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. J Mater Chem C. 2020;8(22):7272–99.

    Article  CAS  Google Scholar 

  35. Liu H, Wang L, Lin G, Feng Y. Recent progress in the fabrication of flexible materials for wearable sensors. Biomater Sci. 2022;10(3):614–32.

    Article  PubMed  Google Scholar 

  36. Das R, Pal R, Bej S, Mondal M, Kundu K, Banerjee P. Recent progress in 0D optical nanoprobes for applications in the sensing of (bio)analytes with the prospect of global health monitoring and detailed mechanistic insights. Mater Adv. 2022;3(11):4421–59.

    Article  CAS  Google Scholar 

  37. Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev. 2017;6(3):301–29.

    Article  CAS  PubMed  Google Scholar 

  38. Yeter EÇ, Şahin S, Caglayan MO, Üstündağ Z. An electrochemical label-free DNA impedimetric sensor with AuNP-modified glass fiber/carbonaceous electrode for the detection of HIV-1 DNA. Chem Pap. 2021;75(1):77–87.

    Article  CAS  Google Scholar 

  39. Kailasa S, Rani BG, Bhargava Reddy MS, Jayarambabu N, Munindra P, Sharma S, et al. NiO nanoparticles -decorated conductive polyaniline nanosheets for amperometric glucose biosensor. Mater Chem Phys. 2020;242: 122524.

    Article  CAS  Google Scholar 

  40. Kim GJ, Kim KO. Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci Rep. 2020;10(1):18858.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bae CW, Toi PT, Kim BY, Lee WI, Lee HB, Hanif A, et al. Fully stretchable capillary microfluidics-integrated nanoporous gold electrochemical sensor for wearable continuous glucose monitoring. ACS Appl Mater Interfaces. 2019;11(16):14567–75.

    Article  CAS  PubMed  Google Scholar 

  42. Lopa NS, Rahman MM, Ahmed F, Ryu T, Lei J, Choi I, et al. A chemically and electrochemically stable, redox-active and highly sensitive metal azolate framework for non-enzymatic electrochemical detection of glucose. J Electroanal Chem. 2019;840:263–71.

    Article  CAS  Google Scholar 

  43. Li F, Li Y, Feng J, Dong Y, Wang P, Chen L, et al. Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosens Bioelectron. 2017;87:630–7.

    Article  CAS  PubMed  Google Scholar 

  44. Xue L, Guo R, Huang F, Qi W, Liu Y, Cai G, et al. An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens Bioelectron. 2021;173: 112800.

    Article  CAS  Google Scholar 

  45. Verma S, Arya P, Singh A, Kaswan J, Shukla A, Kushwaha HR, et al. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum. Biosens Bioelectron. 2020;165: 112347.

    Article  CAS  PubMed  Google Scholar 

  46. Alam MM, Rahman MM, Uddin MT, Asiri AM, Uddin J, Islam MA. Fabrication of enzyme-less folic acid sensor probe based on facile ternary doped Fe2O3/NiO/Mn2O3 nanoparticles. Curr Res Biotechnol. 2020;2:176–86.

    Article  Google Scholar 

  47. Hu F, Liu T, Pang J, Chu Z, Jin W. Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip. Sens Actuators B Chem. 2020;306: 127587.

    Article  CAS  Google Scholar 

  48. Ognjanović M, Stanković V, Knežević S, Antić B, Vranješ-Djurić S, Stanković DM. TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. Microchem J. 2020;158: 105150.

    Article  Google Scholar 

  49. Augustine S, Kumar P, Malhotra BD. Amine-functionalized MoO3@RGO nanohybrid-based biosensor for breast cancer detection. ACS Appl Bio Mater. 2019;2(12):5366–78.

    Article  CAS  PubMed  Google Scholar 

  50. Kannan P, Maduraiveeran G. Metal oxides nanomaterials and nanocomposite-based electrochemical sensors for healthcare applications. Biosensors. 2023;13(5):542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim MJ, Cruz MA, Yang F, Wiley BJ. Accelerating electrochemistry with metal nanowires. Curr Opin Electrochem. 2019;16:19–27.

    Article  CAS  Google Scholar 

  52. Li X, Mo J, Fang J, Xu D, Yang C, Zhang M, et al. Vertical nanowire array-based biosensors: device design strategies and biomedical applications. J Mater Chem B. 2020;8(34):7609–32.

    Article  CAS  PubMed  Google Scholar 

  53. Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A. Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J Am Chem Soc. 2005;127(2):496–7.

    Article  CAS  PubMed  Google Scholar 

  54. Patolsky F, Zheng G, Lieber CM. Nanowire-based biosensors. Anal Chem. 2006;78(13):4260–9.

    Article  CAS  PubMed  Google Scholar 

  55. Liu A. Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosens Bioelectron. 2008;24(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  56. Tran VA, Vo GNL, Vo T-TT, Doan VD, Vo V, Le VT. Recent applications and prospects of nanowire-based biosensors. Processes. 2023;11(6):1739.

  57. Kim N, Han K, Su P-C, Kim I, Yoon Y-J. A rotationally focused flow (RFF) microfluidic biosensor by density difference for early-stage detectable diagnosis. Sci Rep. 2021;11(1):9277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iftikhar FJ, Shah A, Wali Q, Kokab T. Advancements in nanofiber-based electrochemical biosensors for diagnostic applications. Biosensors. 2023;13(4):416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.

    Article  CAS  Google Scholar 

  60. Ece B. Nanofibers: production, characterization, and tissue engineering applications. In: Phuong VP, editor. 21st Century Nanostructured Materials. Rijeka: IntechOpen; 2022. p. Ch. 13.

  61. Seker E, Reed ML, Begley MR. Nanoporous gold: fabrication, characterization, and applications. Materials. 2009;2(4):2188–215.

    Article  CAS  PubMed Central  Google Scholar 

  62. Hu K, Lan D, Li X, Zhang S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA−Au Bio bar codes. Anal Chem. 2008;80(23):9124–30.

    Article  CAS  PubMed  Google Scholar 

  63. Xiao X, Ulstrup J, Li H, Wang Me, Zhang J, Si P. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing. Electrochim Acta. 2014;130:559–67.

  64. Meng F, Yan X, Liu J, Gu J, Zou Z. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim Acta. 2011;56(12):4657–62.

    Article  CAS  Google Scholar 

  65. Sun X, Ma Z. Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen. Anal Chim Acta. 2013;780:95–100.

    Article  CAS  PubMed  Google Scholar 

  66. Lu L. Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing. Mikrochim Acta. 2019;186(9):664.

    Article  PubMed  Google Scholar 

  67. Wang Y, Guo H, Yuan M, Yu J, Wang Z, Chen X. One-step laser synthesis platinum nanostructured 3D porous graphene: a flexible dual-functional electrochemical biosensor for glucose and pH detection in human perspiration. Talanta. 2023;257: 124362.

    Article  CAS  PubMed  Google Scholar 

  68. Mahmoudpour M, Dolatabadi JE-N, Hasanzadeh M, Soleymani J. Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor. Adv Colloid Interface Sci. 2021;298:102550.

  69. Shafique H, de Vries J, Strauss J, Khorrami Jahromi A, Siavash Moakhar R, Mahshid S. Advances in the translation of electrochemical hydrogel-based sensors. Adv Healthc Mater. 2023;12(1):2201501.

    Article  CAS  Google Scholar 

  70. Pawar D, Rao CN, Cao P. Smart polymer-based chemical sensors. Actuators2020. p. 75–138.

  71. Fu X, Ding B, D’Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev. 2023;475: 214814.

    Article  CAS  Google Scholar 

  72. Kwon O, Kim JY, Park S, Lee JH, Ha J, Park H, et al. Computer-aided discovery of connected metal-organic frameworks. Nat Commun. 2019;10(1):3620.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: an overview. Coord Chem Rev. 2022;468: 214627.

    Article  CAS  Google Scholar 

  74. Tajik S, Dourandish Z, Garkani Nejad F, Beitollahi H, Jahani PM, Di Bartolomeo A. Transition metal dichalcogenides: synthesis and use in the development of electrochemical sensors and biosensors. Biosens Bioelectron. 2022;216: 114674.

    Article  CAS  PubMed  Google Scholar 

  75. Li M, Zhang G, Boakye A, Chai H, Qu L, Zhang X. Recent advances in metal-organic framework-based electrochemical biosensing applications. Front bioeng biotechnol. 2021;9:797067.

  76. Karadurmus L, Ozcelikay G, Vural S, Ozkan SA. An overview on quantum dot-based nanocomposites for electrochemical sensing on pharmaceutical assay. Iran J Pharm Res. 2021;20(3):187–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Q, Han N, Shen Z, Li X, Chen Z, Cao Y, et al. MXene-based electrochemical (bio) sensors for sustainable applications: roadmap for future advanced materials. Nano Mater Sci. 2023;5(1):39–52.

    Article  CAS  Google Scholar 

  78. Yahia YA, Tawfik MW, Fritzsche W, Hassan MEA. Review—electrochemical biosensors for interleukins: electrode materials. J Electrochem Soc. 2023;170(6):067501.

  79. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Z, Hu T, Liang R, Wei M. Application of zero-dimensional nanomaterials in biosensing. Front Chem. 2020;8:320.

  81. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26(12):4637–48.

    Article  CAS  PubMed  Google Scholar 

  82. Yadav R, Dixit CK. Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review. J Sci Adv Mater Devices. 2017;2(2):141–9.

    Article  Google Scholar 

  83. Gaidukevic J, Aukstakojyte R, Barkauskas J, Niaura G, Murauskas T, Pauliukaite R. A novel electrochemical sensor based on thermally reduced graphene oxide for the sensitive determination of dopamine. Appl Surf Sci. 2022;592: 153257.

    Article  CAS  Google Scholar 

  84. Ranjan P, Abubakar Sadique M, Yadav S, Khan R. An Electrochemical immunosensor based on gold-graphene oxide nanocomposites with ionic liquid for detecting the breast cancer CD44 biomarker. ACS Appl Mater Interfaces. 2022;14(18):20802–12.

    Article  CAS  PubMed  Google Scholar 

  85. Kim H-U, Kim HY, Seok H, Kanade V, Yoo H, Park K-Y, et al. Flexible MoS2–Polyimide electrode for electrochemical biosensors and their applications for the highly sensitive quantification of endocrine hormones: PTH, T3, and T4. Anal Chem. 2020;92(9):6327–33.

    Article  CAS  PubMed  Google Scholar 

  86. Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron. 2018;121:243–9.

    Article  CAS  PubMed  Google Scholar 

  87. Ganesan S, Ramajayam K, Kokulnathan T, Palaniappan A. Recent advances in two-dimensional MXene-Based electrochemical biosensors for sweat analysis. Molecules. 2023;28(12):4617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(14):5109–24.

    Article  CAS  PubMed  Google Scholar 

  89. Seitak A, Shanti A, Al Adem K, Farid N, Luo S, Iskandarov J, et al. 2D MXenes for controlled releases of therapeutic proteins. J Biomed Mater Res A. 2023;111(4):514–26.

    Article  CAS  PubMed  Google Scholar 

  90. Verger L, Xu C, Natu V, Cheng H-M, Ren W, Barsoum MW. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr Opin Solid State Mater Sci. 2019;23(3):149–63.

    Article  CAS  Google Scholar 

  91. Biosensors Market Share, Size by Type (Sensor Patch) Product (Wearable Biosensors) by Application, by technology, by End Use and Region (Asia Pacific, Europe, North America, Middle East, and Africa, Latin America), and forecast period-2022 – 2030: Market Research Community. Available from: https://marketresearchcommunity.com/biosensors-market/?gad=1&gclid=EAIaIQobChMImqv63PiLgAMVTeF3Ch1aLQ5jEAAYAyAAEgJQLPD_BwE. Accessed 1 Aug 2023

  92. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4(1):199–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Islam MN, Masud MK, Haque MH, Hossain MSA, Yamauchi Y, Nguyen N-T, et al. RNA biomarkers: diagnostic and prognostic potentials and recent developments of electrochemical biosensors. Small Methods. 2017;1(7):1700131.

    Article  Google Scholar 

  94. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and <i>BIC</i> RNA in human B cell lymphomas. Proc Natl Acad Sci. 2005;102(10):3627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Can Res. 2005;65(14):6029–33.

    Article  CAS  Google Scholar 

  96. Sardini E, Serpelloni M, Tonello S. Printed electrochemical biosensors: opportunities and metrological challenges. Biosensors. 2020;10(11):166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Muñoz J, Pumera M. 3D-printed biosensors for electrochemical and optical applications. TrAC Trends Anal Chem. 2020;128: 115933.

    Article  Google Scholar 

  98. Erdem A, Yildiz E, Senturk H, Maral M. Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis. J Pharm Biomed Anal. 2023;230: 115385.

    Article  CAS  PubMed  Google Scholar 

  99. Torul H, Yarali E, Eksin E, Ganguly A, Benson J, Tamer U, et al. Paper-based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparticle electrodes. Biosensors. 2021;11(7):236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alsharabi RM, Rai S, Mohammed HY, Farea MA, Srinivasan S, Saxena PS, et al. A comprehensive review on graphene-based materials as biosensors for cancer detection. Oxf Open Mater Sci. 2022;3(1):itac013.

  101. Fernández H, Zon MA, Maccio SA, Alaníz RD, Di Tocco A, Carrillo Palomino RA, et al. Multivariate optimization of electrochemical biosensors for the determination of compounds related to food safety - a review. Biosensors. 2023;13(7):694.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Desagani D, Ben-Yoav H. Chemometrics meets electrochemical sensors for intelligent in vivo bioanalysis. TrAC Trends Anal Chem. 2023;164: 117089.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kleber.

Ethics declarations

Conflict of interest

Sabine Szunerits is an editor of Analytical and Bioanalytical Chemistry but was not involved in the peer review of this paper. The other authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kny, E., Hasler, R., Luczak, W. et al. State of the art and future research directions of materials science applied to electrochemical biosensor developments. Anal Bioanal Chem 416, 2247–2259 (2024). https://doi.org/10.1007/s00216-023-05054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05054-2

Keywords

Navigation