Skip to main content
Log in

Ionic liquids in green analytical chemistry—are they that good and green enough?

  • Feature Article
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The widespread use of ionic liquids (ILs) as greener solvents in analytical sciences, especially in sample pretreatment, has focused attention on exploiting their enormous potential, not only on eliminating and improving the drawbacks faced by scientists. These ionic compounds with unique physicochemical properties can be tuned through smart synthesis, combining cations and anions, so that the compound exhibits excellent properties for its intended purpose. Ionic liquids are rightly referred to as designer solvents. Validation of a newly proposed analytical methods using ionic liquids, either in sample preparation or in further analysis, is a critical process to demonstrate that a particular analytical method is fit for purpose and provides reliable and accurate results. In addition, this article specially addressed the potential toxicity of ionic liquids with the modest goal of assisting researchers in this field by expanding their target areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trujillo-Rodríguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL. Advances of ionic liquids in analytical chemistry. Anal Chem. 2019;91:505–31. https://doi.org/10.1021/acs.analchem.8b04710.

    Article  CAS  PubMed  Google Scholar 

  2. Płotka-Wasylka J, Rutkowska M, Owczarek K, Tobiszewski M, Namieśnik J. Extraction with environmentally friendly solvents. TrAC, Trends Anal Chem. 2017;91:12–25. https://doi.org/10.1016/j.trac.2017.03.006.

    Article  CAS  Google Scholar 

  3. Ražić S, Arsenijević J, Đogo Mračević S, Mušović J, Trtić-Petrović T. Greener chemistry in analytical sciences: from green solvents to applications in complex matrices. Current challenges and future perspectives: a critical review. Analyst. 2023; 148: 3130–3152. https://doi.org/10.1039/d3an00498h

  4. De la Guardia M, Garrigues S, editors. Handbook of green analytical chemistry. Ltd: John Wiley & Sons; 2012. p. 1–33.

    Google Scholar 

  5. Koel M, editor. Ionic liquids in chemical analysis. LLC: Taylor & Francis Group; 2009. p. 1–60.

    Google Scholar 

  6. Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC, Trends Anal Chem. 2013;50:78–84. https://doi.org/10.1016/j.trac.2013.04.010.

    Article  CAS  Google Scholar 

  7. Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White analytical chemistry: an approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC, Trends Anal Chem. 2021;138: 116223. https://doi.org/10.1016/j.trac.2021.116223.

    Article  CAS  Google Scholar 

  8. Gonçalves ARP, Paredes X, Cristino AF, Santos FJV, Queirós CSGP. Ionic liquids – a review of their toxicity to living organisms. Int J Mol Sci. 2021;22:5612–62. https://doi.org/10.3390/ijms22115612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou J, Sui H, Jia Z, Yang Z, He L, Li X. Recovery and purification of ionic liquids from solutions: a review. RSC Adv. 2018;8:32832–64. https://doi.org/10.1039/C8RA06384B.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Outeiriño D, Costa-Trigo I, Rodríguez A, Pérez Guerra N, Domínguez JM. Recovery and reuse of ionic liquid cholinium glycinate in the treatment of brewery spent grain. Sep Purif Technol. 2021;254: 117651. https://doi.org/10.1016/j.seppur.2020.117651.

    Article  CAS  Google Scholar 

  11. Huang K, Wu R, Cao Y, Li H, Wang J. Recycling and reuse of ionic liquid in homogeneous cellulose acetylation. Chin J Chem Eng. 2013;21:577–84. https://doi.org/10.1016/S1004-9541(13)60524-8.

    Article  CAS  Google Scholar 

  12. Bogdanov MG, Keremedchieva R, Svinyarov I. Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. III. Ionic liquid regeneration and glaucine recovery from ionic liquid-aqueous crude extract of Glaucium flavum Cr. (Papaveraceae) Sep Purif Technol. 2015; 155: 13–19. https://doi.org/10.1016/j.seppur.2015.02.003]. ]

  13. Wise SA. What if using certified reference materials (CRMs) was a requirement to publish in analytical/bioanalytical journals? Anal Bioanal Chem. 2022;414:7015–22. https://doi.org/10.1007/s00216-022-04163-8.

    Article  CAS  PubMed  Google Scholar 

  14. Yavir K, Konieczna K, Marcinkowski L, Kloskowski A. Ionic liquids in the microextraction techniques: the influence of ILs structure and properties. TrAC, Trends Anal Chem. 2020;130: 115994. https://doi.org/10.1016/j.trac.2020.115994.

    Article  CAS  Google Scholar 

  15. González-Martín R, Lodoso-Ruiz E, Trujillo-Rodríguez MJ, Pino V. Magnetic ionic liquids in analytical microextraction: a tutorial review. J Chromatogr A. 2022;1685: 463577. https://doi.org/10.1016/j.chroma.2022.463577.

    Article  CAS  PubMed  Google Scholar 

  16. Mušović J, Vraneš M, Papović S, Gadžurić S, Ražić S, Trtić-Petrović T. Greener sample preparation method for direct determination of Cd(II) and Pb(II) in river sediment based on an aqueous biphasic system with functionalized ionic liquids. J Mol Liq. 2023;369: 120974. https://doi.org/10.1016/j.molliq.2022.120974.

    Article  CAS  Google Scholar 

  17. Nguyen TT, Huyn TTT, Nguyen NH, Nguyen TH, Tran PH. Recent advances in the application of ionic liquid-modified silica gel in solid-phase extraction. J Mol Liq. 2022;68: 120623. https://doi.org/10.1016/j.molliq.2022.120623.

    Article  CAS  Google Scholar 

  18. Jon C-S, Meng L-Y, Li D. Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. TrAC, Trends Anal Chem. 2019;120: 115641. https://doi.org/10.1016/j.trac.2019.115641.

    Article  CAS  Google Scholar 

  19. Zhao R, An J, Sun Y, He L, Jiang X, Zhang S. A simple and low-cost sample preparation for the effective extraction, purification and enrichment of aflatoxins in wheat by combining with ionic liquid-based dispersive liquid–liquid microextraction. Microchem J. 2021;164: 106036. https://doi.org/10.1016/j.microc.2021.106036.

    Article  CAS  Google Scholar 

  20. Lled´o D, Grindlay G, Serrano R, Gras L, Sansano JM. Imidazolium-based task-specific ionic liquid for selective Ag, Cu, Pd and Pt determination by means of dispersive liquid-liquid microextraction and inductively coupled plasma optical emission spectrometry. Spectrochim Acta Part B: At Spectrosc. 2023; 204: 106672. https://doi.org/10.1016/j.sab.2023.106672.

  21. Yang H, Dai H, Wan X, Shan D, Zhang Q, Li J, Xu Q, Wang C. Simultaneous determination of multiple mycotoxins in corn and wheat by high efficiency extraction and purification based on polydopamine and ionic liquid bifunctional nanofiber mat. Anal Chim Acta. 2023;1267: 341361. https://doi.org/10.1016/j.aca.2023.341361.

    Article  CAS  PubMed  Google Scholar 

  22. Serrano M, Chatzimitakos T, Gallego M, Stalikas CD. 1-Butyl-3-aminopropyl imidazolium—functionalized graphene oxide as a nanoadsorbent for the simultaneous extraction of steroids and β-blockers via dispersive solid–phase microextraction. J Chromatogr A. 2016;1436:9–18. https://doi.org/10.1016/j.chroma.2016.01.052.

    Article  CAS  PubMed  Google Scholar 

  23. Docherty KM, Kulpa CFJ. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005;7:185–9. https://doi.org/10.1039/B419172B.

    Article  CAS  Google Scholar 

  24. Petkovic M, Seddon KR, Rebelo LP, Silva PC. Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev. 2011;40:1383–403. https://doi.org/10.1039/C004968A.

    Article  CAS  PubMed  Google Scholar 

  25. Ventura SPM, de Barros RLF, Sintra T, Soares CMF, Lima AS, Coutinho JAP. Ecotoxicol Environ Saf. 2012;83:55–62. https://doi.org/10.1016/j.ecoenv.2012.06.002.

    Article  CAS  PubMed  Google Scholar 

  26. Chul-Woong C, Thi Phuong TP, You-Chul J, Yeoung-Sang Y. Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem. 2008;10:67–72. https://doi.org/10.1039/B705520J.

    Article  Google Scholar 

  27. Stolte S, Arning J, Bottin-Weber U, Müller A, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J. Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem. 2007;9:760–7. https://doi.org/10.1039/B711119C.

    Article  CAS  Google Scholar 

  28. Vraneš M, Tot A, Jovanović-Šanta S, Karaman M, Dožić S, Tešanović K, Kojić V, Gadžurić S. Toxicity reduction of imidazolium-based ionic liquids by the oxygenation of the alkyl substituent. RSC Adv. 2016;6:96289–95. https://doi.org/10.1039/C6RA16182K.

    Article  ADS  CAS  Google Scholar 

  29. Cho CW, Stolte S, Yun Y S. Comprehensive approach for predicting toxicological effects of ionic liquids on several biological systems using unified descriptors. Sci Rep. 2016; 6: 33403. https://doi.org/10.1038/srep33403

  30. Vraneš M, Tot A, Papovic S, Cetojevic-Simin D, Markov S, Velicanski A, Popsavin M, Gadžuric S. Physicochemical features and toxicity of some vitamin based ionic liquids. J Mol Liq. 2017;247:411–24. https://doi.org/10.1016/j.molliq.2017.10.015.

    Article  CAS  Google Scholar 

  31. Greaves TL, Drumond CJ. Protic ionic liquids: properties and applications. Chem Rev. 2008;108(1):206–37. https://doi.org/10.1021/cr068040u.

    Article  CAS  PubMed  Google Scholar 

  32. Dimitrić N, Spremo N, Vraneš M, Belić S, Karaman M, Kovačević S, Karadžić M, Podunavac-Kuzmanović S, Korolija Crkvenjakov D, Gadžurić S. New protic ionic liquids for fungi and bacteria removal from paper heritage artefacts. RSC Adv. 2019;9:17905–12. https://doi.org/10.1039/C9RĂ7K.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Ventura SP, Gonçalves AM, Coutinho JA. Ecotoxicity analysis of cholinium-based ionic liquids towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf. 2011;74(4):895–901. https://doi.org/10.1016/j.ecoenv.2014.01.003.

    Article  CAS  Google Scholar 

  34. Peric B, Sierra J, Martí E, Cruañas R, Garau MA, Arning J, Bottin-Weber U, Stolte S. (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater. 2013;261:99–105. https://doi.org/10.1016/j.jhazmat.2013.06.070.

    Article  CAS  PubMed  Google Scholar 

  35. Jesus F, Passos H, Ferreira AM, Kuroda K, Pereira JL, Gonçalves FJM, Coutinho JAP, Ventura SPM. Zwitterionic compounds are less ecotoxic than their analogous ionic liquids. Green Chem. 2021;23:3683–92. https://doi.org/10.1039/d1gc00477h.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is supported by the Study Group Sample Preparation of the Division of Analytical Chemistry of the European Chemical Society (DAC-EuChemS).

Funding

This research was funded by the Ministry of Education, Science, and Technological Development, Republic of Serbia (contracts: 451–03-47/2023–01/200161, 451–03-47/2023–01/200125 and 451–03-68/2023–14/200017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavica Ražić.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ražić, S., Gadžurić, S. & Trtić-Petrović, T. Ionic liquids in green analytical chemistry—are they that good and green enough?. Anal Bioanal Chem 416, 2023–2029 (2024). https://doi.org/10.1007/s00216-023-05045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05045-3

Keywords

Navigation