Skip to main content
Log in

Leveraging the use of ionic liquid capillary columns and GC×GC-MS for fatty acid profiling in human colostrum samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lipids in human colostrum provide the majority of energy intake and essential fatty acids for developing infants. The fatty acid composition of human colostrum is highly variable and influenced by multiple factors. Human colostrum is a complex sample bringing challenges to fatty acid profiling. This work aimed to optimize the use of ionic liquid (IL) columns and flow-modulated comprehensive two-dimensional gas chromatography coupled to mass spectrometry (FM-GC×GC-MS) for fatty acid profiling in human colostrum. Derivatization strategies were optimized and the elution behavior of fatty acid methyl esters (FAME) on various 1D column phases (Solgel-WAX, SLB-IL60i, SLB-IL76i, and SLB-IL111i). Derivatization with sodium methoxide yielded a satisfactory recovery rate (90%) at milder conditions and reduced time. The use of IL60 as the 1D column provided superior separation, good peak shape, and better utilization of elution space. As a proof of concept, the developed method was applied to access the effects of the mode of neonatal delivery (vaginal vs. C-section) on the fatty acid profile of human colostrum samples. The integrated multidimensional gas chromatography strategy improved FAME detection and separation and can be a useful tool for accessing the effects of different factors on the fatty acid profiling of complex samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Floris LM, Stahl B, Abrahamse-Berkeveld M, Teller IC. Human milk fatty acid profile across lactational stages after term and preterm delivery: a pooled data analysis. Prostaglandins, Leukotrienes Essen Fatty Acids. 2020;156:102023. https://doi.org/10.1016/j.plefa.2019.102023.

    Article  CAS  Google Scholar 

  2. Hanley B, Dijane J, Fewtrell M, Grynberg A, Hummel S, Junien C, Koletzko B, Lewis S, Renz H, Symonds M, Gros M, Harthoorn L, Mace K, Samuels F, van der Beek EM. Metabolic imprinting, programming and epigenetics – a review of present priorities and future opportunities. British J Nutri. 2010;104:S1–S25. https://doi.org/10.1017/S0007114510003338.

    Article  CAS  Google Scholar 

  3. (1982) ESPGAN committee on nutrition. Guidelines on infant nutrition. III. Recommendations for infant feeding. Acta Paediatr Scand Suppl 302:1–27.

  4. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids. 2001;36:885–95. https://doi.org/10.1007/s11745-001-0798-1.

    Article  CAS  PubMed  Google Scholar 

  5. Gibson RA, Kneebone GM. Fatty acid composition of human colostrum and mature breast milk. Am J Clin Nutr. 1981;34:252–7. https://doi.org/10.1093/ajcn/34.2.252.

    Article  CAS  PubMed  Google Scholar 

  6. Jensen RG. Lipids in human milk. Lipids. 1999;34:1243–71. https://doi.org/10.1007/s11745-999-0477-2.

    Article  CAS  PubMed  Google Scholar 

  7. Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T. Physiological aspects of human milk lipids. Early Hum Dev. 2001;65(Suppl):S3–S18. https://doi.org/10.1016/s0378-3782(01)00204-3.

    Article  CAS  PubMed  Google Scholar 

  8. Samuel TM, Thielecke F, Lavalle L, Chen C, Fogel P, Giuffrida F, Dubascoux S, Martínez-Costa C, Haaland K, Marchini G, Agosti M, Rakza T, Costeira MJ, Picaud J-C, Billeaud C, Thakkar SK. Mode of neonatal delivery influences the nutrient composition of human milk: results from a multicenter European Cohort of Lactating Women. Front Nutri. 2022;9 https://doi.org/10.3389/fnut.2022.834394.

  9. Kohn G, van der Ploeg P, Möbius M, Sawatzki G. Influence of the derivatization procedure on the results of the gaschromatographic fatty acid analysis of human milk and infant formulae. Z Ernahrungswiss. 1996;35:226–34. https://doi.org/10.1007/BF01625685.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng AX, Chin S-T, Marriott PJ. Integrated multidimensional and comprehensive 2D GC analysis of fatty acid methyl esters. J Separation Sci. 2013;36:878–85. https://doi.org/10.1002/jssc.201200923.

    Article  CAS  Google Scholar 

  11. Bogusz S Jr, Hantao LW, Braga SC, de Matos França VD, da Costa MF, Hamer RD, Ventura DF, Augusto F. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography for fatty acid profiling of cell wall phospholipids. J Separation Sci. 2012;35:2438–44. https://doi.org/10.1002/jssc.201200256.

    Article  CAS  Google Scholar 

  12. Delmonte P, Fardin-Kia AR, Kramer JKG, Mossoba MM, Sidisky L, Tyburczy C, Rader JI. Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatog A. 2012;1233:137–46. https://doi.org/10.1016/j.chroma.2012.02.012.

    Article  CAS  Google Scholar 

  13. Christie WW. Gas chromatography and lipids: a practical guide. Repr: The Oily Press, Ayr, Scotland; 1994.

    Google Scholar 

  14. Delmonte P, Fardin Kia A-R, Kramer JKG, Mossoba MM, Sidisky L, Rader JI. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J Chromatog A. 2011;1218:545–54. https://doi.org/10.1016/j.chroma.2010.11.072.

    Article  CAS  Google Scholar 

  15. Ragonese C, Tranchida PQ, Dugo P, Dugo G, Sidisky LM, Robillard MV, Mondello L. Evaluation of use of a dicationic liquid stationary phase in the fast and conventional gas chromatographic analysis of health-hazardous C18 cis/trans fatty acids. Anal Chem. 2009;81:5561–8. https://doi.org/10.1021/ac9007094.

    Article  CAS  PubMed  Google Scholar 

  16. Manzano P, Arnáiz E, Diego JC, Toribio L, García-Viguera C, Bernal JL, Bernal J. Comprehensive two-dimensional gas chromatography with capillary flow modulation to separate FAME isomers. J Chromatog A. 2011;1218:4952–9. https://doi.org/10.1016/j.chroma.2011.02.002.

    Article  CAS  Google Scholar 

  17. von Mühlen C, Zini CA, Caramão EB, Marriott PJ. Caracterização de amostras petroquímicas e derivados utilizando cromatografia gasosa bidimensional abrangente (GCxGC). Quím Nova. 2006;29:765–75. https://doi.org/10.1590/S0100-40422006000400025.

    Article  Google Scholar 

  18. Purcaro G, Tranchida PQ, Mondello L. Comprehensive gas chromatography methodologies for the analysis of lipids. In: Handbook of advanced chromatography/mass spectrometry techniques, Chapter 11. AOCS Press: Published by Elsevier Inc.; 2017. https://doi.org/10.1016/B978-0-12-811732-3.00011-X.

    Chapter  Google Scholar 

  19. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biolog Chem. 1957;226:497–509. https://doi.org/10.1016/S0021-9258(18)64849-5.

    Article  CAS  Google Scholar 

  20. Guidoni M, de Christo Scherer MM, Figueira MM, Schmitt EFP, de Almeida LC, Scherer R, Bogusz S, Fronza M. Fatty acid composition of vegetable oil blend and in vitro effects of pharmacotherapeutical skin care applications. Braz J Med Biol Res. 2019;52:e8209. https://doi.org/10.1590/1414-431X20188209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shantha NC, Napolitano GE. Gas chromatography of fatty acids. Journal of Chromatography A. 1992;624:37–51. https://doi.org/10.1016/0021-9673(92)85673-H.

    Article  CAS  Google Scholar 

  22. Giuffrida F, Fleith M, Goyer A, Samuel TM, Elmelegy-Masserey I, Fontannaz P, Cruz-Hernandez C, Thakkar SK, Monnard C, De Castro CA, Lavalle L, Rakza T, Agosti M, Al-Jashi I, Pereira AB, Costeira MJ, Marchini G, Vanpee M, Stiris T, et al. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr. 2022;61:2167–82. https://doi.org/10.1007/s00394-021-02788-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr. 2015;61:8–17. https://doi.org/10.1097/MPG.0000000000000818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Western RJ, Lau SSG, Marriott PJ, Nichols PD. Positional and geometric isomer separation of FAME by comprehensive 2-D GC. Lipids. 2002;37:715–24. https://doi.org/10.1007/s11745-002-0953-8.

    Article  CAS  PubMed  Google Scholar 

  25. Innis SM. Human milk: maternal dietary lipids and infant development. Proc Nutri Soc. 2007;66:397–404. https://doi.org/10.1017/S0029665107005666.

    Article  CAS  Google Scholar 

  26. Fidler N, Koletzko B. The fatty acid composition of human colostrum. Eur J Nutr. 2000;39:31–7. https://doi.org/10.1007/s003940050073.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) foundation for the PNPD/CAPES postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

FFGD: methodology, formal analysis, writing—original draft preparation, review and editing; SBJ: conceptualization, supervision, writing—review and editing; RSS: resources and samples, review and editing; MF; resources and samples, review and editing; LWH: conceptualization writing—review and editing, supervision, project administration funding acquisition.

Corresponding authors

Correspondence to Stanislau Bogusz Jr. or Leandro Wang Hantao.

Ethics declarations

Institutional review board

The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board (or Ethics Committee) (no. 1,804,463).

Informed consent

Patient consent was waived due to the nature of the study. No identification can be made by the results shown herein.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, F.F.G., Bogusz, S., Silva, R.S. et al. Leveraging the use of ionic liquid capillary columns and GC×GC-MS for fatty acid profiling in human colostrum samples. Anal Bioanal Chem 416, 191–201 (2024). https://doi.org/10.1007/s00216-023-05006-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05006-w

Keywords

Navigation