Skip to main content
Log in

Development of biosensors for detection of fibrinogen: a review

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fibrinogen as a major inflammation marker and blood coagulation factor has a direct impact on the health of humanity. The variations in fibrinogen content lead to risky conditions such as bleeding and cardiovascular diseases. So, accurate methods for monitoring of this glycoprotein are of high importance. The conventional methods, such as the Clauss method, are time consuming and require highly specialized expert analysts. The development of fast, simple, easy to use, and inexpensive methods is highly desired. In this way, biosensors have gained outstanding attention since they offer means for performing analyses at the points-of-care using self-testing devices, which can be applied outside of clinical laboratories or hospital. This review indicates that different electrochemical and optical sensors have been successfully implemented for the detection of fibrinogen under normal levels of fibrinogen in plasma. The biosensors for the detection of fibrinogen have been designed based on the quartz crystal microbalance, field-effect transistor, electrochemical impedance spectroscopy, amperometry, surface plasmon resonance, localized surface plasmon resonance, and colorimetric techniques. Also, this review demonstrates the utility of the application of nanoparticles in different detection techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lowe GD, Rumley A, Mackie IJ. Plasma fibrinogen. Ann Clin Biochem. 2004;41(6):430–40.

    Article  PubMed  CAS  Google Scholar 

  2. Collaboration ERF. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–20.

    Article  Google Scholar 

  3. Neerman-Arbez M, Casini A. Clinical consequences and molecular bases of low fibrinogen levels. Int J Mol Sci. 2018;19(1):192.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miesbach W, Schenk J, Alesci S, Lindhoff-Last E. Comparison of the fibrinogen Clauss assay and the fibrinogen PT derived method in patients with dysfibrinogenemia. Thromb Res. 2010;126(6):e428–33.

    Article  PubMed  CAS  Google Scholar 

  5. Choi JR. Development of point-of-care biosensors for COVID-19. Front Chem. 2020;8:517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zadran S, Standley S, Wong K, Otiniano E, Amighi A, Baudry M. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl Microbiol Biotechnol. 2012;96:895–902.

    Article  PubMed  CAS  Google Scholar 

  7. Majdinasab M, Badea M, Marty JL. Aptamer-based lateral flow assays: current trends in clinical diagnostic rapid tests. Pharmaceuticals. 2022;15(1):90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rhouati A, Teniou A, Badea M, Marty JL. Analysis of recent bio-/nanotechnologies for coronavirus diagnosis and therapy. Sensors. 2021;21(4):1485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sharma A, Badea M, Tiwari S, Marty JL. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules. 2021;26(3):748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Haleem A, Javaid M, Singh RP, Suman R, Rab S. Biosensors applications in medical field: a brief review. Sens Int. 2021;2:100100.

    Article  Google Scholar 

  11. Pourasl AH, Ahmadi MT, Rahmani M, Chin HC, Lim CS, Ismail R, et al. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res Lett. 2014;9:1–7.

    Article  Google Scholar 

  12. Mohammadinejad A, Oskuee RK, Eivazzadeh-Keihan R, Rezayi M, Baradaran B, Maleki A, et al. Development of biosensors for detection of alpha-fetoprotein: as a major biomarker for hepatocellular carcinoma. TrAC Trends Analyt Chem. 2020;130:115961.

    Article  CAS  Google Scholar 

  13. Mohammadinejad A, Taghdisi SM, Es’haghi Z, Abnous K, Mohajeri SA. Targeted imaging of breast cancer cells using two different kinds of aptamers-functionalized nanoparticles. Eur J Pharm Sci. 2019;134:60–8.

    Article  PubMed  CAS  Google Scholar 

  14. Badea M, Di Modugno F, Floroian L, Tit DM, Restani P, Bungau S, et al. Electrochemical strategies for gallic acid detection: potential for application in clinical, food or environmental analyses. Sci Total Environ. 2019;672:129–40.

    Article  PubMed  CAS  Google Scholar 

  15. Aizawa H, Kurosawa S, Tozuka M, Park J-W, Kobayashi K, Tanaka H. Conventional detection method of fibrinogen and fibrin degradation products using latex piezoelectric immunoassay. Biosens Bioelectron. 2003;18(5–6):765–71.

    Article  PubMed  CAS  Google Scholar 

  16. Chen Q, Hua X, Fu W, Liu D, Chen M, Cai G. Quantitative determination of fibrinogen of patients with coronary heart diseases through piezoelectric agglutination sensor. Sensors. 2010;10(3):2107–18.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yao C, Qu L, Fu W. Detection of fibrinogen and coagulation factor VIII in plasma by a quartz crystal microbalance biosensor. Sensors. 2013;13(6):6946–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Oberfrank S, Drechsel H, Sinn S, Northoff H, Gehring FK. Utilisation of quartz crystal microbalance sensors with dissipation (QCM-D) for a clauss fibrinogen assay in comparison with common coagulation reference methods. Sensors. 2016;16(3):282.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saleem W, Salinas C, Watkins B, Garvey G, Sharma AC, Ghosh R. Antibody functionalized graphene biosensor for label-free electrochemical immunosensing of fibrinogen, an indicator of trauma induced coagulopathy. Biosens Bioelectron. 2016;86:522–9.

    Article  PubMed  CAS  Google Scholar 

  20. Durai L, Badhulika S. Highly sensitive electrochemical impedance-based biosensor for label-free and wide range detection of fibrinogen using hydrothermally grown AlFeO 3 nanospheres modified electrode. IEEE Sens J. 2020;21(4):4160–6.

    Article  Google Scholar 

  21. Park J, Lee W, Kim I, Kim M, Jo S, Kim W, et al. Ultrasensitive detection of fibrinogen using erythrocyte membrane-draped electrochemical impedance biosensor. Sens Actuators B: Chem. 2019;293:296–303.

    Article  CAS  Google Scholar 

  22. Regmi A, Sarangadharan I, Chen Y-W, Hsu C-P, Lee G-Y, Chyi J-I, et al. Direct detection of fibrinogen in human plasma using electric-double-layer gated AlGaN/GaN high electron mobility transistors. Appl Phys Lett. 2017;111(8):082106.

    Article  Google Scholar 

  23. Tai T-Y, Sinha A, Sarangadharan I, Pulikkathodi AK, Wang S-L, Shiesh S-C, et al. Aptamer-functionalized AlGaN/GaN high-electron-mobility transistor for rapid diagnosis of fibrinogen in human plasma. Sens Mater. 2018;30(10):2321–31.

    CAS  Google Scholar 

  24. Campuzano S, Salema V, Moreno-Guzmán M, Gamella M, Yáñez-Sedeño P, Fernández L, et al. Disposable amperometric magnetoimmunosensors using nanobodies as biorecognition element. Determination of fibrinogen in plasma. Biosens Bioelectron. 2014;52:255–60.

    Article  PubMed  CAS  Google Scholar 

  25. Ojeda I, Garcinuño B, Moreno-Guzmán M, González-Cortés A, Yudasaka M, Iijima S, et al. Carbon nanohorns as a scaffold for the construction of disposable electrochemical immunosensing platforms. Application to the determination of fibrinogen in human plasma and urine. Anal Chem. 2014;86(15):7749–56.

    Article  PubMed  CAS  Google Scholar 

  26. Dyr JE, Tichý I, Jiroušková M, Tobiška P, Slavık R, Homola J, et al. Molecular arrangement of adsorbed fibrinogen molecules characterized by specific monoclonal antibodies and a surface plasmon resonance sensor. Sens Actuators B: Chem. 1998;51(1–3):268–72.

    Article  CAS  Google Scholar 

  27. Kostyukevich EV, Snopok BA, Zinio SA, Shirshov YM, Kolesnikova IN, Lugovskoi EV, editors. New optoelectronic system based on the surface plasmon resonance phenomenon: application to the concentration determination of DD-fragment of fibrinogen. Opto-Contact: Workshop on Technology Transfers, Start-Up Opportunities, and Strategic Alliances; 1998: SPIE.

  28. Wang R, Lajevardi-Khosh A, Choi S, Chae J. Regenerative Surface Plasmon Resonance (SPR) biosensor: real-time measurement of fibrinogen in undiluted human serum using the competitive adsorption of proteins. Biosens Bioelectron. 2011;28(1):304–7.

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen TT, Bea SO, Kim DM, Yoon WJ, Park J-W, An SSA, et al. A regenerative label-free fiber optic sensor using surface plasmon resonance for clinical diagnosis of fibrinogen. Int J Nanomed. 2015;10(Spec Iss):155.

  30. Kim J, Kim S, Nguyen TT, Lee R, Li T, Yun C, et al. Label-free quantitative immunoassay of fibrinogen in Alzheimer disease patient plasma using fiber optical surface plasmon resonance. J Electron Mater. 2016;45(5):2354–60.

    Article  CAS  Google Scholar 

  31. Hiep HM, Saito M, Nakamura Y, Tamiya E. RNA aptamer-based optical nanostructured sensor for highly sensitive and label-free detection of antigen–antibody reactions. Anal Bioanal Chem. 2010;396(7):2575–81.

    Article  PubMed  CAS  Google Scholar 

  32. Jo S, Kim I, Lee W, Kim M, Park J, Lee G, et al. Highly sensitive and wide-range nanoplasmonic detection of fibrinogen using erythrocyte membrane-blanketed nanoparticles. Biosens Bioelectron. 2019;135:216–23.

    Article  PubMed  CAS  Google Scholar 

  33. Kim I, Lee D, Lee SW, Lee JH, Lee G, Yoon DS. Coagulation-inspired direct fibrinogen assay using plasmonic nanoparticles functionalized with red blood cell membranes. ACS Nano. 2021;15(4):6386–94.

    Article  PubMed  CAS  Google Scholar 

  34. Tang Z, Wu H, Du D, Wang J, Wang H, Qian W-j, et al. Sensitive immunoassays of nitrated fibrinogen in human biofluids. Talanta. 2010;81(4–5):1662–9.

    Article  PubMed  CAS  Google Scholar 

  35. Hou T, Zhang Y, Wu T, Wang M, Zhang Y, Li R, et al. Label-free detection of fibrinogen based on the fibrinogen-enhanced peroxidase activity of a fibrinogen–hemin composite. Analyst. 2018;143(3):725–30.

    Article  PubMed  CAS  Google Scholar 

  36. Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21(10):1192–9.

    Article  PubMed  CAS  Google Scholar 

  37. Baraket A, Lee M, Zine N, Sigaud M, Bausells J, Errachid A. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens Bioelectron. 2017;93:170–5.

    Article  PubMed  CAS  Google Scholar 

  38. Cabral-Miranda G, Cardoso AR, Ferreira LC, Sales MGF, Bachmann MF. Biosensor-based selective detection of Zika virus specific antibodies in infected individuals. Biosens Bioelectron. 2018;113:101–7.

    Article  PubMed  CAS  Google Scholar 

  39. Manzano M, Viezzi S, Mazerat S, Marks RS, Vidic J. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens Bioelectron. 2018;100:89–95.

    Article  PubMed  CAS  Google Scholar 

  40. Alatraktchi FAa, Bakmand T, Dimaki M, Svendsen WE. Novel membrane-based electrochemical sensor for real-time bio-applications. Sensors. 2014;14(11):22128–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martínez F, Castillo-León J. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode. Analyst. 2013;138(4):1026–31.

    Article  PubMed  CAS  Google Scholar 

  42. Gachpazan M, Mohammadinejad A, Saeidinia A, Rahimi HR, Ghayour-Mobarhan M, Vakilian F, et al. A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker. Anal Bioanal Chem. 2021;413:5949–67.

    Article  PubMed  CAS  Google Scholar 

  43. Cimalla I, Will F, Tonisch K, Niebelschütz M, Cimalla V, Lebedev V, et al. AlGaN/GaN biosensor—effect of device processing steps on the surface properties and biocompatibility. Sens Actuators B: Chem. 2007;123(2):740–8.

    Article  CAS  Google Scholar 

  44. Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mohammadinejad A, Abnous K, Nameghi MA, Yahyazadeh R, Hamrah S, Senobari F, et al. Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. Spectrochim Acta A Mol Biomol Spectrosc. 2023;288:122200.

    Article  PubMed  CAS  Google Scholar 

  46. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors. Sens Actuators B: Chem. 1999;54(1–2):3–15.

    Article  CAS  Google Scholar 

  47. Gupta BD, Verma RK. Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J Senso. 2009;2009. https://doi.org/10.1155/2009/979761

  48. Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111(6):3828–57.

    Article  PubMed  CAS  Google Scholar 

  49. Lee S, Mayer KM, Hafner JH. Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem. 2009;81(11):4450–5.

    Article  PubMed  CAS  Google Scholar 

  50. Gordon R, Sinton D, Kavanagh KL, Brolo AG. A new generation of sensors based on extraordinary optical transmission. Acc Chem Res. 2008;41(8):1049–57.

    Article  PubMed  CAS  Google Scholar 

  51. Hiep HM, Yoshikawa H, Saito M, Tamiya E. An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multilayers. ACS Nano. 2009;3(2):446–52.

    Article  PubMed  CAS  Google Scholar 

  52. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–53.

    Article  PubMed  CAS  Google Scholar 

  53. Ha HM, Endo T, Kim DK, Tamiya E. Nanostructure and molecular interface for biosensing devices. In: Nanomaterials Synthesis, Interfacing, and Integrating in Devices, Circuits, and Systems II (vol. 6768). SPIE; 2007. pp. 116–26.

  54. Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264–71.

    Article  PubMed  CAS  Google Scholar 

  55. Jo NR, Lee KJ, Shin YB. Enzyme-coupled nanoplasmonic biosensing of cancer markers in human serum. Biosens Bioelectron. 2016;81:324–33. https://doi.org/10.1016/j.bios.2016.03.009

  56. Gnedenko OV, Mezentsev YV, Molnar AA, Lisitsa AV, Ivanov AS, Archakov AI. Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal Chim Acta. 2013;759:105–9.

    Article  PubMed  CAS  Google Scholar 

  57. Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem. 2004;76(18):5370–8.

    Article  PubMed  CAS  Google Scholar 

  58. Yang B, Shi L, Lei J, Li B, Jin Y. Advances in optical assays for detecting telomerase activity. Luminescence. 2019;34(2):136–52.

    Article  PubMed  CAS  Google Scholar 

  59. Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys. 1959;155:206–22.

    Article  CAS  Google Scholar 

  60. Mohammadinejad A, Heydari M, Kazemi Oskuee R, Rezayi M. A critical systematic review of developing aptasensors for diagnosis and detection of diabetes biomarkers. Crit Rev Anal Chem. 2022;52(8):1795–817.

  61. Chu C-H, Sarangadharan I, Regmi A, Chen Y-W, Hsu C-P, Chang W-H, et al. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Sci Rep. 2017;7(1):1–15.

    Article  Google Scholar 

  62. Mohammadinejad A, Heydari M, Kazemi Oskuee R, Rezayi M. A critical systematic review of developing aptasensors for diagnosis and detection of diabetes biomarkers. Crit Rev Anal Chem. 2022;52(8):1795–817.

    Article  PubMed  CAS  Google Scholar 

  63. Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry. 2002;41(11):3628–36.

    Article  PubMed  CAS  Google Scholar 

  64. Kamath S, Lip G. Fibrinogen: biochemistry, epidemiology and determinants. Qjm. 2003;96(10):711–29.

    Article  PubMed  CAS  Google Scholar 

  65. Li X, Zhang Y, Xue B, Kong X, Liu X, Tu L, et al. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosens Bioelectron. 2017;92:517–22.

    Article  PubMed  CAS  Google Scholar 

  66. Ratajczak K, Sklodowska-Jaros K, Kalwarczyk E, Michalski JA, Jakiela S, Stobiecka M. Effective optical image assessment of cellulose paper immunostrips for blood typing. Int J Mol Sci. 2022;23(15):8694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Faculty of Medicine, and Research and Development Institute of Transilvania University of Brasov, Romania, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Badea.

Ethics declarations

Ethics approval

Not applicable

Source of biological material

Not applicable

Statement on animal welfare

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadinejad, A., Aleyaghoob, G., Nooranian, S. et al. Development of biosensors for detection of fibrinogen: a review. Anal Bioanal Chem 416, 21–36 (2024). https://doi.org/10.1007/s00216-023-04976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04976-1

Keywords

Navigation