Skip to main content

Advertisement

Log in

A PVDF-based colorimetric sensor array for noninvasive detection of multiple disease-related volatile organic compounds

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Detection of human-generated volatile organic compounds (VOCs) is a new pathway for assessing health. Herein, a polyvinylidene fluoride (PVDF)-based colorimetric sensor array was designed for detecting disease-related VOCs (DVOCs) within 15 min, using a complex of Cu metal–organic framework, graphene aerogel, and dyes as response materials. Fingermaps derived from 28 DVOCs were obtained for further data processing. Pattern recognition was successfully employed in the correct discrimination of 28 DVOCs in low (10 μM), medium (100 μM), and high (300 μM) concentrations. Importantly, the sensor array also presented excellent discrimination ability and application potential when detecting VOCs produced by human cancer and normal cells. In general, VOC acquisition is noninvasive and harmless, and the PVDF-based sensor arrays are simple and visual. Such advantages expand their further application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schematic 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cho SM, Kim YJ, Heo GS, Shin S-M. Two-step preconcentration for analysis of exhaled gas of human breath with electronic nose. Sens Actuators, B Chem. 2006;117(1):50–7. https://doi.org/10.1016/j.snb.2005.10.050.

    Article  CAS  Google Scholar 

  2. Kamal F, Kumar S, Edwards MR, Veselkov K, Belluomo I, Kebadze T, Romano A, Trujillo-Torralbo MB, Shahridan Faiez T, Walton R, Ritchie AI, Wiseman DJ, Laponogov I, Donaldson G, Wedzicha JA, Johnston SL, Singanayagam A, Hanna GB. Virus-induced volatile organic compounds are detectable in exhaled breath during pulmonary infection. Am J Respir Crit Care Med. 2021;204(9):1075–85. https://doi.org/10.1164/rccm.202103-0660OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci U S A. 1971;68(10):2374–6. https://doi.org/10.1073/pnas.68.10.2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jalal AH, Alam F, Roychoudhury S, Umasankar Y, Pala N, Bhansali S. Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 2018;3(7):1246–63. https://doi.org/10.1021/acssensors.8b00400.

    Article  CAS  PubMed  Google Scholar 

  5. Ripszam M, Bruderer T, Biagini D, Ghimenti S, Lomonaco T, Di Francesco F. Biological studies with comprehensive 2D-GC-HRMS screening: exploring the human sweat volatilome. Talanta. 2023;257:124333. https://doi.org/10.1016/j.talanta.2023.124333.

    Article  CAS  PubMed  Google Scholar 

  6. Drabinska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res. 2021;15(3):034001. https://doi.org/10.1088/1752-7163/abf1d0.

    Article  Google Scholar 

  7. Ding X, Zhang Y, Zhang Y, Ding X, Zhang H, Cao T, Qu ZB, Ren J, Li L, Guo Z, Xu F, Wang QX, Wu X, Shi G, Haick H, Zhang M. Modular assembly of MXene frameworks for noninvasive disease diagnosis via urinary volatiles. ACS Nano. 2022;16(10):17376–88. https://doi.org/10.1021/acsnano.2c08266.

    Article  CAS  PubMed  Google Scholar 

  8. Tyagi H, Daulton E, Bannaga AS, Arasaradnam RP, Covington JA. Urinary volatiles and chemical characterisation for the non-invasive detection of prostate and bladder cancers. Biosensors (Basel). 2021;11:437. https://doi.org/10.3390/bios11110437.

    Article  CAS  PubMed  Google Scholar 

  9. Ligor T, Adamczyk P, Kowalkowski T, Ratiu IA, Wenda-Piesik A, Buszewski B. Analysis of VOCs in urine samples directed towards of bladder cancer detection. Molecules. 2022;27(15):5023. https://doi.org/10.3390/molecules27155023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Janssens E, van Meerbeeck JP, Lamote K. Volatile organic compounds in human matrices as lung cancer biomarkers: a systematic review. Crit Rev Oncol Hematol. 2020;153:103037. https://doi.org/10.1016/j.critrevonc.2020.103037.

    Article  PubMed  Google Scholar 

  11. Koureas M, Kirgou P, Amoutzias G, Hadjichristodoulou C, Gourgoulianis K, Tsakalof A. Target analysis of volatile organic compounds in exhaled breath for lung cancer discrimination from other pulmonary diseases and healthy persons. Metabolites. 2020;10(8):317. https://doi.org/10.3390/metabo10080317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pizzini A, Filipiak W, Wille J, Ager C, Wiesenhofer H, Kubinec R, Blasko J, Tschurtschenthaler C, Mayhew CA, Weiss G, Bellmann-Weiler R. Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease. J Breath Res. 2018;12(3):036002. https://doi.org/10.1088/1752-7163/aaa4c5.

    Article  CAS  PubMed  Google Scholar 

  13. Saktiawati AMI, Putera DD, Setyawan A, Mahendradhata Y, van der Werf TS. Diagnosis of tuberculosis through breath test: a systematic review. EBioMedicine. 2019;46:202–14. https://doi.org/10.1016/j.ebiom.2019.07.056.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barker M, Hengst M, Schmid J, Buers HJ, Mittermaier B, Klemp D, Koppmann R. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J. 2006;27(5):929–36. https://doi.org/10.1183/09031936.06.00085105.

    Article  CAS  PubMed  Google Scholar 

  15. van de Kant KDG, van der Sande LJTM, Jöbsis Q, van Schayck OCP, Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res. 2012;13:117. https://doi.org/10.1186/1465-9921-13-117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vasilescu A, Hrinczenko B, Swain GM, Peteu SF. Exhaled breath biomarker sensing. Biosens Bioelectron. 2021;182:113193. https://doi.org/10.1016/j.bios.2021.113193.

    Article  CAS  PubMed  Google Scholar 

  17. Han B, Wang J, Yang W, Chen X, Wang H, Chen J, Zhang C, Sun J, Wei X. Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis. Sens Actuators B Chem. 2020;309:127788. https://doi.org/10.1016/j.snb.2020.127788.

    Article  CAS  Google Scholar 

  18. Tyas FH, Nikita JG, Apriyanto DK, Mitrayana A, Amin MN. The performance of CO2 laser photoacoustic spectrometer in concentration acetone detection as biomarker for diabetes mellitus type 2. J Phys Conf Ser. 2018;1011:012056. https://doi.org/10.1088/1742-6596/1011/1/012056.

    Article  CAS  Google Scholar 

  19. Cao S, Xu Y, Yu Z, Zhang P, Xu X, Sui N, Zhou T, Zhang T. A dual sensing platform for human exhaled breath enabled by Fe-MIL-101-NH(2) metal-organic frameworks and its derived Co/Ni/Fe trimetallic oxides. Small. 2022;18(42):e2203715. https://doi.org/10.1002/smll.202203715.

    Article  CAS  PubMed  Google Scholar 

  20. Xu S, Yang C, Tian Y, Lu J, Jiang Y, Guo H, Zhao J, Peng H. Exploitation of Schottky-junction-based sensors for specifically detecting ppt-concentration gases. ACS Sens. 2022;7(12):3764–72. https://doi.org/10.1021/acssensors.2c01591.

    Article  CAS  PubMed  Google Scholar 

  21. Zou X, Zhou W, Lu Y, Shen C, Hu Z, Wang H, Jiang H, Chu Y. Exhaled gases online measurements for esophageal cancer patients and healthy people by proton transfer reaction mass spectrometry. J Gastroenterol Hepatol. 2016;31(11):1837–43. https://doi.org/10.1111/jgh.13380.

    Article  CAS  PubMed  Google Scholar 

  22. Kwon IJ, Jung TY, Son Y, Kim B, Kim SM, Lee JH. Detection of volatile sulfur compounds (VSCs) in exhaled breath as a potential diagnostic method for oral squamous cell carcinoma. BMC Oral Health. 2022;22(1):268. https://doi.org/10.1186/s12903-022-02301-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Rahbari-Oskoui F, Wong C. Volatile markers of breast cancer in the breath. Breast J. 2003;9(3):184–91. https://doi.org/10.1046/j.1524-4741.2003.09309.x.

    Article  PubMed  Google Scholar 

  24. Altomare DF, Di Lena M, Porcelli F, Travaglio E, Longobardi F, Tutino M, Depalma N, Tedesco G, Sardaro A, Memeo R, de Gennaro G. Effects of curative colorectal cancer surgery on exhaled volatile organic compounds and potential implications in clinical follow-up. Ann Surg. 2015;262(5):862–6. https://doi.org/10.1097/SLA.0000000000001471. (discussion 866-867).

    Article  PubMed  Google Scholar 

  25. Wu X, Wang D, Shi L, Wang H, Wang J, Sun J, Li C, Tian X. A compact gas chromatography platform for detection of multicomponent volatile organic compounds biomarkers. Rev Sci Instrum. 2022;93(6):065003. https://doi.org/10.1063/5.0086618.

    Article  CAS  PubMed  Google Scholar 

  26. Ullah S, Sandqvist S, Beck O. A liquid chromatography and tandem mass spectrometry method to determine 28 non-volatile drugs of abuse in exhaled breath. J Pharm Biomed Anal. 2018;148:251–8. https://doi.org/10.1016/j.jpba.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  27. Lu Y, Niu W, Zou X, Shen C, Xia L, Huang C, Wang H, Jiang H, Chu Y. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites. J Chromatogr A. 2017;1496:20–4. https://doi.org/10.1016/j.chroma.2017.03.061.

    Article  CAS  PubMed  Google Scholar 

  28. Gashimova E, Osipova A, Temerdashev A, Porkhanov V, Polyakov I, Perunov D, Dmitrieva E. Exhaled breath analysis using GC-MS and an electronic nose for lung cancer diagnostics. Anal Methods. 2021;13(40):4793–804. https://doi.org/10.1039/d1ay01163d.

    Article  CAS  PubMed  Google Scholar 

  29. Da Silva Sena CR, de Queiroz AE, de Gouveia BP, Percival E, Prangemeier B, Donoghue C, Terry S, Burke T, Gunning W, Murphy VE, Robinson PD, Sly PD, Gibson PG, Collison AM, Mattes J. Higher exhaled nitric oxide at 6 weeks of age is associated with less bronchiolitis and wheeze in the first 12 months of age. Thorax. 2022;77(11):1106. https://doi.org/10.1136/thoraxjnl-2021-217299.

    Article  PubMed  Google Scholar 

  30. Li Z, Askim JR, Suslick KS. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem Rev. 2019;119(1):231–92. https://doi.org/10.1021/acs.chemrev.8b00226.

    Article  CAS  PubMed  Google Scholar 

  31. Shi C, Tang Y, Yang H, Yang J, Wu Y, Sun H, Yin S, Wang G. Capture and detection of Escherichia coli with graphene aerogels. J Mater Chem B. 2022;10(40):8211–7. https://doi.org/10.1039/d2tb01749k.

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Deng W, Yang L, Tan Y, Xie Q, Yao S. Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of staphylococcus aureus. ACS Appl Mater Interfaces. 2017;9(29):24440–5. https://doi.org/10.1021/acsami.7b07307.

    Article  CAS  PubMed  Google Scholar 

  33. Velusamy P, Su CH, Ramasamy P, Arun V, Rajnish N, Raman P, Baskaralingam V, Senthil Kumar SM, Gopinath SCB. Volatile organic compounds as potential biomarkers for noninvasive disease detection by nanosensors: a comprehensive review. Crit Rev Anal Chem. 2022;1–12. https://doi.org/10.1080/10408347.2022.2043145

Download references

Acknowledgements

This work was supported by the Chongqing Natural Science Foundation (CSTB2023NSCQ-BHX0078), Research projects of Wanzhou, China (wzstc20220314), Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYS23136), National Facility for Translational Medicine (Shanghai) Open Research Fund (TMSK-2021-113), Chongqing Graduate Tutor Team Construction Project, Analytical and Testing Center of Chongqing University for TEM and the sharing fund of Chongqing University's large equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danqun Huo or Jiawei Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 345 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Liu, X., Hou, C. et al. A PVDF-based colorimetric sensor array for noninvasive detection of multiple disease-related volatile organic compounds. Anal Bioanal Chem 415, 6647–6661 (2023). https://doi.org/10.1007/s00216-023-04941-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04941-y

Keywords

Navigation