Skip to main content
Log in

An automated spray-capillary platform for the microsampling and CE-MS analysis of picoliter- and nanoliter-volume samples

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Capillary electrophoresis mass spectrometry (CE-MS) is an emerging analytical tool for microscale biological sample analysis that offers high separation resolution, low detection limit, and low sample consumption. We recently developed a novel microsampling device, “spray-capillary,” for quantitative low-volume sample extraction (as low as 15 pL/s) and online CE-MS analysis. This platform can efficiently analyze picoliter samples (e.g., single cells) with minimal sample loss and no additional offline sample-handling steps. However, our original spray-capillary-based experiments required manual manipulation of the sample inlet for sample collection and separation, which is time consuming and requires proficiency in device handling. To optimize the performance of spray-capillary CE-MS analysis, we developed an automated platform for robust, high-throughput analysis of picoliter samples using a commercially available CE autosampler. Our results demonstrated high reproducibility among 50 continuous runs using the standard peptide angiotensin II (Ang II), with an RSD of 14.70% and 0.62% with respect to intensity and elution time, respectively. We also analyzed Ang II using varying injection times to evaluate the capability of the spray-capillary to perform quantitative sampling and found high linearity for peptide intensity with respect to injection time (R2 > 0.99). These results demonstrate the capability of the spray-capillary sampling platform for high-throughput quantitative analysis of low-volume, low-complexity samples using pressure elution (e.g., direct injection). To further evaluate and optimize the automated spray-capillary platform to analyze complex biological samples, we performed online CE-MS analysis on Escherichia coli lysate digest spiked with Ang II using varying injection times. We maintained high linearity of intensity with respect to injection time for Ang II and E. coli peptides (R2 > 0.97 in all cases). Furthermore, we observed good CE separation and high reproducibility between automated runs. Overall, we demonstrated that the automated spray-capillary CE-MS platform can efficiently and reproducibly sample picoliter and nanoliter biological samples for high-throughput proteomics analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun B, Kumar S. Protein adsorption loss─the bottleneck of single-cell proteomics. J Proteome Res. 2022;21(8):1808–15.

    Article  CAS  PubMed  Google Scholar 

  2. Wu R, Xing S, Badv M, Didar TF, Lu Y. Step-wise assessment and optimization of sample handling recovery yield for nanoproteomic analysis of 1000 mammalian cells. Anal Chem. 2019;91(16):10395–400.

    Article  CAS  PubMed  Google Scholar 

  3. Kelly RT. Single-cell proteomics: progress and prospects. Mol Cell Proteomics. 2020;19(11):1739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slavov N. Single-cell protein analysis by mass spectrometry. Curr Opin Chem Biol. 2021;60:1–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cupp-Sutton KA, Fang M, Wu S. Separation methods in single-cell proteomics: RPLC or CE? Int J Mass Spectrom. 2022;481: 116920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang P, Gaffrey MJ, Zhu Y, Chrisler WB, Fillmore TL, Yi L, et al. Carrier-assisted single-tube processing approach for targeted proteomics analysis of low numbers of mammalian cells. Anal Chem. 2019;91(2):1441–51.

    Article  PubMed  Google Scholar 

  7. Whittal RM, Keller BO, Li L. Nanoliter chemistry combined with mass spectrometry for peptide mapping of proteins from single mammalian cell lysates. Anal Chem. 1998;70(24):5344–7.

    Article  CAS  PubMed  Google Scholar 

  8. Sun L, Zhu G, Dovichi NJ. Integrated capillary zone electrophoresis–electrospray ionization tandem mass spectrometry system with an immobilized trypsin microreactor for online digestion and analysis of picogram amounts of RAW 264.7 cell lysate. Anal Chem. 2013;85(8):4187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun L, Zhu G, Li Y, Yang P, Dovichi NJ. Coupling methanol denaturation, immobilized trypsin digestion, and accurate mass and time tagging for liquid-chromatography-based shotgun proteomics of low nanogram amounts of RAW 264.7 cell lysate. Anal Chem. 2012;84(20):8715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Z-Y, Huang M, Wang X-K, Zhu Y, Li J-S, Wong CCL, et al. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis. Anal Chem (Washington, DC, U S). 2018;90(8):5430–8.

    Article  CAS  Google Scholar 

  11. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat Commun. 2018;9(1):882.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liang Y, Acor H, McCown MA, Nwosu AJ, Boekweg H, Axtell NB, et al. Fully automated sample processing and analysis workflow for low-input proteome profiling. Anal Chem. 2021;93(3):1658–66.

    Article  CAS  PubMed  Google Scholar 

  13. Woo J, Williams SM, Markillie LM, Feng S, Tsai C-F, Aguilera-Vazquez V, et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat Commun. 2021;12(1):6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams SM, Liyu AV, Tsai C-F, Moore RJ, Orton DJ, Chrisler WB, et al. Automated coupling of nanodroplet sample preparation with liquid chromatography–mass spectrometry for high-throughput single-cell proteomics. Anal Chem. 2020;92(15):10588–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Specht H, Harmange G, Perlman DH, Emmott E, Niziolek Z, Budnik B, et al. Automated sample preparation for high-throughput single-cell proteomics. bioRxiv Syst Biol. 2018;399774.

  16. Budnik B, Levy E, Harmange G, Slavov N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018;19(1):161.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Petelski AA, Emmott E, Leduc A, Huffman RG, Specht H, Perlman DH, et al. Multiplexed single-cell proteomics using SCoPE2. Nat Protoc. 2021;16(12):5398–425.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes AJ, Lin RK, Peehl DM, Herr AE. Microfluidic integration for automated targeted proteomic assays. Proc Natl Acad Sci. 2012;109(16):5972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin JG, Rejtar T, Martin SA. Integrated microscale analysis system for targeted liquid chromatography mass spectrometry proteomics on limited amounts of enriched cell populations. Anal Chem. 2013;85(22):10680–5.

    Article  CAS  PubMed  Google Scholar 

  20. Xue M, Wei W, Su Y, Kim J, Shin YS, Mai WX, et al. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J Am Chem Soc. 2015;137(12):4066–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang EL, Piehowski PD, Orton DJ, Moore RJ, Qian W-J, Casey CP, et al. SNaPP: simplified nanoproteomics platform for reproducible global proteomic analysis of nanogram protein quantities. Endocrinology. 2016;157(3):1307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan L, Qiao L, Ji J, Li Y, Yin X, Lin L, et al. In-tip nanoreactors for cancer cells proteome profiling. Anal Chim Acta. 2017;949:43–52.

    Article  CAS  PubMed  Google Scholar 

  23. Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol Syst Biol. 2014;10(10):757.

    Article  PubMed  Google Scholar 

  24. Yang Z, Zhang Z, Chen D, Xu T, Wang Y, Sun L. Nanoparticle-aided nanoreactor for nanoproteomics. Anal Chem. 2021;93(30):10568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Dubiak KM, Huber PW, Dovichi NJ. Miniaturized filter-aided sample preparation (MICRO-FASP) method for high throughput, ultrasensitive proteomics sample preparation reveals proteome asymmetry in Xenopus laevis embryos. Anal Chem. 2020;92(7):5554–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kostas JC, Greguš M, Schejbal J, Ray S, Ivanov AR. Simple and efficient microsolid-phase extraction tip-based sample preparation workflow to enable sensitive proteomic profiling of limited samples (200 to 10,000 cells). J Proteome Res. 2021;20(3):1676–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DeLaney K, Sauer CS, Vu NQ, Li L. Recent Advances and New Perspectives in Capillary Electrophoresis-Mass Spectrometry for Single Cell “Omics.” Molecules. 2019;24(1):42.

    Article  Google Scholar 

  28. Onjiko RM, Portero EP, Moody SA, Nemes P. In situ microprobe single-cell capillary electrophoresis mass spectrometry: metabolic reorganization in single differentiating cells in the live vertebrate (Xenopus laevis) embryo. Anal Chem. 2017;89(13):7069–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lombard-Banek C, Moody SA, Manzini MC, Nemes P. Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: developing cell clones in live Xenopus laevis and zebrafish embryos. Anal Chem. 2019;91(7):4797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawai T, Ota N, Okada K, Imasato A, Owa Y, Morita M, et al. Ultrasensitive single cell metabolomics by capillary electrophoresis-mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration. Anal Chem. 2019;91(16):10564–72.

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Chen D, Wang J, Chen J. Advances of Single-Cell Protein Analysis Cells. 2020;9(5):1271.

    PubMed  Google Scholar 

  32. Johnson KR, Gao Y, Greguš M, Ivanov AR. On-capillary cell lysis enables top-down proteomic analysis of single mammalian cells by CE-MS/MS. Anal Chem. 2022;94(41):14358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Onjiko RM, Portero EP, Moody SA, Nemes P. In situ microprobe single-cell capillary electrophoresis mass spectrometry: metabolic reorganization in single differentiating cells in the live vertebrate (Xenopus laevis) embryo. Anal Chem. 2017;89(13):7069–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lombard-Banek C, Choi SB, Nemes P. Single-cell proteomics in complex tissues using microprobe capillary electrophoresis mass spectrometry. Methods Enzymol. 2019;628:263–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lombard-Banek C, Moody SA, Manzini MC, Nemes P. Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: developing cell clones in live Xenopus laevis and zebrafish embryos. Anal Chem (Washington, DC, U S). 2019;91(7):4797–805.

    Article  CAS  Google Scholar 

  36. Marie A-L, Ray S, Ivanov AR. Highly-sensitive label-free deep profiling of N-glycans released from biomedically-relevant samples. Nat Commun. 2023;14(1):1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stuart JN, Sweedler JV. Single-cell analysis by capillary electrophoresis. Anal Bioanal Chem. 2003;375(1):28–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lombard-Banek C, Moody SA, Nemes P. Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo. Angew Chem Int Ed Engl. 2016;55(7):2454–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Onjiko RM, Moody SA, Nemes P. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. Proc Natl Acad Sci. 2015;112(21):6545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lombard-Banek C, Moody SA, Nemes P. Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo. Angew Chem, Int Ed. 2016;55(7):2454–8.

    Article  CAS  Google Scholar 

  41. Nemes P, Baxi AB, Pade LR. Cell-Lineage Guided Mass Spectrometry Proteomics in the Developing (Frog) Embryo. JoVE. 2022;182.

  42. Zeng H, Weng Y, Ikeda S, Nakagawa Y, Nakajima H, Uchiyama K. Accurate and highly reproducible picoliter injection system for capillary electrophoresis. Anal Chem. 2012;84(24):10537–42.

    Article  CAS  PubMed  Google Scholar 

  43. Huang L, Wang Z, Cupp-Sutton KA, Smith K, Wu S. Spray-capillary: an electrospray-assisted device for quantitative ultralow-volume sample handling. Anal Chem. 2020;92(1):640–6.

    Article  CAS  PubMed  Google Scholar 

  44. Huang L, Fang M, Cupp-Sutton KA, Wang Z, Smith K, Wu S. Spray-capillary-based capillary electrophoresis mass spectrometry for metabolite analysis in single cells. Anal Chem. 2021;93(10):4479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peuchen EH, Zhu G, Sun L, Dovichi NJ. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system. Anal Bioanal Chem. 2017;409(7):1789–95.

    Article  CAS  PubMed  Google Scholar 

  46. Guo Y, Yu D, Cupp-Sutton KA, Liu X, Wu S. Optimization of protein-level tandem mass tag (TMT) labeling conditions in complex samples with top-down proteomics. Anal Chim Acta. 2022;1221:340037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao P, Moini M. A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. J Am Soc Mass Spectrom. 1997;8(5):561–4.

    Article  CAS  Google Scholar 

  48. Santos M, Ratnayake C, Fonslow B, Guttman A. A covalent, cationic polymer coating method for the CESI-MS analysis of intact proteins and polypeptides. SCIEX Separations application note. 2015.

  49. Huang L, Wang Z, Cupp-Sutton KA, Smith K, Wu S. Spray-capillary: an electrospray-assisted device for quantitative ultralow-volume sample handling. Anal Chem. 2020;92(1):640–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018;14(8):e8126.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Johnson KR, Greguš M, Ivanov AR. Coupling high-field asymmetric ion mobility spectrometry with capillary electrophoresis-electrospray ionization-tandem mass spectrometry improves protein identifications in bottom-up proteomic analysis of low nanogram samples. J Proteome Res. 2022;21(10):2453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faserl K, Sarg B, Gruber P, Lindner HH. Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis. 2018;39(9–10):1208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng J, Morin GB, Chen DDY. Bottom-up proteomics of envelope proteins extracted from spinach chloroplast via high organic content CE-MS. Electrophoresis. 2020;41(5–6):370–8.

    Article  CAS  PubMed  Google Scholar 

  54. Gomes FP, Yates JR III. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. Mass Spectrom Rev. 2019;38(6):445–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu G, Sun L, Dovichi NJ. Thermally-initiated free radical polymerization for reproducible production of stable linear polyacrylamide coated capillaries, and their application to proteomic analysis using capillary zone electrophoresis–mass spectrometry. Talanta. 2016;146:839–43.

    Article  CAS  PubMed  Google Scholar 

  56. Lubeckyj RA, McCool EN, Shen X, Kou Q, Liu X, Sun L. Single-shot top-down proteomics with capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for identification of nearly 600 Escherichia coli proteoforms. Anal Chem. 2017;89(22):12059–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wahl JH, Goodlett DR, Udseth HR, Smith RD. Use of small-diameter capillaries for increasing peptide and protein detection sensitivity in capillary electrophoresis-mass spectrometry. Electrophoresis. 1993;14(1):448–57.

    Article  CAS  PubMed  Google Scholar 

  58. Jankowski JA, Tracht S, Sweedler JV. Assaying single cells with capillary electrophoresis. TrAC, Trends Anal Chem. 1995;14(4):170–6.

    Article  CAS  Google Scholar 

  59. Sun L, Zhu G, Zhao Y, Yan X, Mou S, Dovichi NJ. Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew Chem Int Ed. 2013;52(51):13661–4.

    Article  CAS  Google Scholar 

  60. Kok MGM, Somsen GW, de Jong GJ. Comparison of capillary electrophoresis-mass spectrometry and hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine. Talanta. 2015;132:1–7.

    Article  CAS  PubMed  Google Scholar 

  61. Ramautar R, Somsen GW, de Jong GJ. CE–MS for metabolomics: developments and applications in the period 2014–2016. Electrophoresis. 2017;38(1):190–202.

    Article  CAS  PubMed  Google Scholar 

  62. Soga T, Heiger DN. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2000;72(6):1236–41.

    Article  CAS  PubMed  Google Scholar 

  63. Gennaro LA, Salas-Solano O. On-line CE−LIF−MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem. 2008;80(10):3838–45.

    Article  CAS  PubMed  Google Scholar 

  64. Maxwell EJ, Ratnayake C, Jayo R, Zhong X, Chen DDY. A promising capillary electrophoresis–electrospray ionization–mass spectrometry method for carbohydrate analysis. Electrophoresis. 2011;32(16):2161–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by grants from OCAST HR23-169, NIH NIAID R01AI141625, and NIH NIH/NIAID2U19AI062629.

We also thank the OU Protein Production and Characterization Core (PPC) facility and Dr. Philip Bourne for supporting E. coli protein extraction. The PPC is supported by Institutional Development Awards (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (Grants P20GM103640 and P30GM145423), the OU Vice President for Research and Partnerships, and the OU College of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kellye A. Cupp-Sutton or Si Wu.

Ethics declarations

Competing interests

The authors declare that they have no known competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Recent Advances in Ultrasensitive Omics Techniques with guest editor Joseph Zaia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, L., Guo, Y. et al. An automated spray-capillary platform for the microsampling and CE-MS analysis of picoliter- and nanoliter-volume samples. Anal Bioanal Chem 415, 6961–6973 (2023). https://doi.org/10.1007/s00216-023-04870-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04870-w

Keywords

Navigation