Skip to main content
Log in

Matrix-assisted laser-desorption/ionization–mass spectrometric imaging of psilocybin and its analogues in psychedelic mushrooms using a cesium chloride-coated target plate

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fungi with hallucinogenic properties and neurotoxicity have been listed as prohibited drugs in recent years, but there is a lack of in situ quantification of psilocybin and analogues in these samples to avoid the decomposition of these psychoactive tryptamines in time-consuming sample preparation. In this study, matrix-assisted laser-desorption/ionization (MALDI)–Fourier transform ion cyclotron resonance (FT ICR) mass spectrometric imaging (MSI) was used to analyze the distribution of psilocybin and its analogues in hallucinogenic Psilocybe mushrooms. A cesium chloride (CsCl)-coated target plate was prepared to improve the detection sensitivity and reduce the interference of other compounds or decomposition products with very similar m/z values in MALDI–FT ICR MS analysis. Psilocybin and other tryptamines with structurally similar compounds, including psilocin, baeocystin, tryptophan, tryptamine, and aeruginascin, were identified and imaged in the psilocybe tissue section; the semiquantitative analysis of the distribution of psilocybin was also investigated using a homemade 75-well CsCl-coated plate; and the target plate can be placed on the mass spectrometry target carrier along with the indium–tin oxide (ITO) conductive slide, which can simultaneously carry out matrix vapor deposition, thus ensuring the parallelism between the standards and samples in the pretreatment experiment and MSI. The contents of psilocybin and its analogues in the psilocybe tissue section can be evaluated from the color changes corresponding to different concentration standard curves. Furthermore, a comprehensive comparison between MALDI–FT ICR MS and ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC–Q/TOF MS) analysis was performed for quantification and validation. This study reduces the decomposition in time-consuming sample pretreatment and provides a powerful tool for drug abuse control and forensic analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amsterdam J, Opperhuizen A, van den Brink W. Harm potential of magic mushroom use: a review. Regul Toxicol Pharmacol. 2011;59(3):423–9. https://doi.org/10.1016/j.yrtph.2011.01.006.

    Article  Google Scholar 

  2. Gonçalves J, Luis Â, Gallardo E, Duarte AP. Psychoactive substances of natural origin: toxicological aspects, therapeutic properties and analysis in biological samples. Molecules. 2021;26(5):1397. https://doi.org/10.3390/molecules26051397.

    Article  CAS  Google Scholar 

  3. Patocka J, Wu R, Nepovimova E, Valis M, Wu W, Kuca K. Chemistry and toxicology of major bioactive substances in inocybe mushrooms. Int J Mol Sci. 2021;22(4):2218. https://doi.org/10.3390/ijms22042218.

    Article  CAS  Google Scholar 

  4. Diaz JH. Nephrotoxic mushroom poisoning: global epidemiology, clinical manifestations, and management. Wilderness Environ Med. 2021;32(4):537–44. https://doi.org/10.1016/j.wem.2021.09.002.

    Article  Google Scholar 

  5. Salas-Wright CP, Hodges JC, Ha AH, Alsolami A, Vaughn MG. Toward a typology of hallucinogen users in the United States. Drug Alcohol Depend. 2021;229(Pt B): 109139. https://doi.org/10.1016/j.drugalcdep.2021.109139.

    Article  Google Scholar 

  6. Hase A, Erdmann M, Limbach V, Hasler G. Analysis of recreational psychedelic substance use experiences classified by substance. Psychopharmacology. 2022;239(2):643–59. https://doi.org/10.1007/s00213-022-06062-3.

    Article  CAS  Google Scholar 

  7. Liokaftos D. Sociological investigations of human enhancement drugs: the case of microdosing psychedelics. Int J Drug Policy. 2021;95: 103099. https://doi.org/10.1016/j.drugpo.2020.103099.

    Article  Google Scholar 

  8. Solano J, Anabalón L, Figueroa S, Lizama C, Reyes LC, Gangitano D. Psychedelic fungus (Psilocybe sp.) authentication in a case of illegal drug traffic: sporological, molecular analysis and identification of the psychoactive substance. Sci Justice. 2019; 59(1): 102–108. https://doi.org/10.1016/j.scijus.2018.08.005.

  9. Gambaro V, Roda G, Visconti GL, Arnoldi S, Casagni E, Dell’Acqua L, Farèa F, Paladino E, Rusconi C, Arioli S, Mora D. DNA-based taxonomic identification of basidiospores in hallucinogenic mushrooms cultivated in “grow-kits” seized by the police: LC-UV quali-quantitative determination of psilocybin and psilocin. J Pharm Biomed Anal. 2016;125:427–32. https://doi.org/10.1016/j.jpba.2016.03.043.

    Article  CAS  Google Scholar 

  10. Anastos N, Lewis SW, Barnett NW, Noel SD. The determination of psilocin and psilocybin in hallucinogenic mushrooms by HPLC utilizing a dual reagent acidic potassium permanganate and tris (2, 2’-bipyridyl)ruthenium(II) chemiluminescence detection system. J Forensic Sci. 2006;51(1):45–51. https://doi.org/10.1111/j.1556-4029.2005.00033.x.

    Article  CAS  Google Scholar 

  11. Dinis-Oliveira RJ. Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metab Rev. 2017;49(1):84–91. https://doi.org/10.1080/03602532.2016.1278228.

    Article  CAS  Google Scholar 

  12. Pichini S, Marchei E, García-Algar O, Gomez A, Giovannandrea RD, Pacifici R. Ultra-high-pressure liquid chromatography tandem mass spectrometry determination of hallucinogenic drugs in hair of psychedelic plants and mushrooms consumers. J Pharm Biomed Anal. 2014;100:284–9. https://doi.org/10.1016/j.jpba.2014.08.006.

    Article  CAS  Google Scholar 

  13. Kolaczynska KE, Liechti ME, Duthaler U. Development and validation of an LC-MS/MS method for the bioanalysis of psilocybin’s main metabolites, psilocin and 4-hydroxyindole-3-acetic acid, in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1164(1): 122486. https://doi.org/10.1016/j.jchromb.2020.122486.

    Article  CAS  Google Scholar 

  14. Chen J, Li M, Yan X, Wu E, Zhu HM, Lee KJ, Chu VM, Zhan LF, Lee WJ, Kang JS. Determining the pharmacokinetics of psilocin in rat plasma using ultra-performance liquid chromatography coupled with a photodiode array detector after orally administering an extract of Gymnopilus spectabilis. J Chromatogr B. 2011;879(25):2669–72. https://doi.org/10.1016/j.jchromb.2011.07.003.

    Article  CAS  Google Scholar 

  15. Bambauer TP, Wagmann L, Maurer HH, Weber AA, Meyer MR. Development and application of a strategy for analyzing eight biomarkers in human urine to verify toxic mushroom or ricinus communis ingestions by means of hydrophilic interaction LC coupled to HRMS/MS. Talanta. 2020;213: 120847. https://doi.org/10.1016/j.talanta.2020.120847.

    Article  CAS  Google Scholar 

  16. Poliwoda A, Zielińska K, Wieczorek P. Direct analysis of psilocin and muscimol in urine samples using single drop microextraction technique in-line with capillary electrophoresis. Molecules. 2020;25(7):1566. https://doi.org/10.3390/molecules25071566.

    Article  CAS  Google Scholar 

  17. Keller T, Schneider A, Regenscheit P, Dirnhofer R, Rucker T, Jaspers J, Kisser W. Analysis of psilocybin and psilocin in Psilocybe subcubensis GUZMAN by ion mobility spectrometry and gas chromatography–mass spectrometry. Forensic Sci Int. 1999;99:93–105. https://doi.org/10.1016/S0379-0738(98)00168-6.

    Article  CAS  Google Scholar 

  18. Mishraki-Berkowitz T, Kochelski E, Kavanagh P, O’Brien J, Dunne C, Talbot B, Ennis P, Wolf UE. The psilocin (4-hydroxy-N, N-dimethyltryptamine) and bufotenine (5-hydroxy-N, N-dimethyltryptamine) case: ensuring the correct isomer has been identified. J Forensic Sci. 2020;5:1450–7. https://doi.org/10.1111/1556-4029.14368.

    Article  CAS  Google Scholar 

  19. Kamata T, Nishikawa M, Katagi M, Tsuchihashi H. Liquid chromatography-mass spectrometric and liquid chromatography-tandem mass spectrometric determination of hallucinogenic indoles psilocin and psilocybin in “magic mushroom” samples. J Forensic Sci. 2005;50(2):336–40. https://doi.org/10.1088/0022-3727/31/5/003.

    Article  CAS  Google Scholar 

  20. Gotvaldová K, Hájková K, Borovička J, Jurok R, Cihlářová P, Kuchař M. Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom Psilocybe cubensis. Drug Test Anal. 2021;13(2):439–46. https://doi.org/10.1002/dta.2950.

    Article  CAS  Google Scholar 

  21. Kosentka P, Sprague SL, Ryberg M, Gartz J, May AL, Campagna SR, Matheny PB. Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi. PLoS ONE. 2013;8(5): e64646. https://doi.org/10.1111/1556-4029.14368.

    Article  CAS  Google Scholar 

  22. Morita I, Kiguchi Y, Oyama H, Takeuchi A, Tode C, Tanaka R, Ogata J, Kikura-Hanajiri R, Kobayashi N. Derivatization-assisted enzyme-linked immunosorbent assay for identifying hallucinogenic mushrooms with enhanced sensitivity. Anal Methods. 2021;13(35):3954–62. https://doi.org/10.1039/D1AY01157J.

    Article  CAS  Google Scholar 

  23. Laussmann T, Meier-Giebing S. Forensic analysis of hallucinogenic mushrooms and khat (Catha edulis FORSK) using cation-exchange liquid chromatography. Forensic Sci Int. 2010;195:160–4. https://doi.org/10.1016/j.forsciint.2009.12.013.

    Article  CAS  Google Scholar 

  24. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90(1):240–65. https://doi.org/10.1021/acs.analchem.7b04733.

    Article  CAS  Google Scholar 

  25. Flinders B, Beasley E, Verlaan RM, Cuypers E, Francese S, Bassindale T, Clench MR, Heeren RMA. Optimization of sample preparation and instrumental parameters for the rapid analysis of drugs of abuse in hair samples by MALDI–MS/MS imaging. J Am Soc Mass Spectrom. 2017;28(11):2462–8. https://doi.org/10.1007/s13361-017-1766-0.

    Article  CAS  Google Scholar 

  26. Flinders B, Cuypers E, Zeijlemaker H, Tytgat J, Heeren RMA. Preparation of longitudinal sections of hair samples for the analysis of cocaine by MALDI–MS/MS and TOF-SIMS imaging. Drug Test Analysis. 2015;7(10):859–65. https://doi.org/10.1002/dta.1812.

    Article  CAS  Google Scholar 

  27. Shen M, Xiang P, Shi Y, Pu H, Yan H, Shen BH. Mass imaging of ketamine in a single scalp hair by MALDI–FTMS. Anal Bioanal Chem. 2014;406(19):4611–6. https://doi.org/10.1007/s00216-014-7898-1.

    Article  CAS  Google Scholar 

  28. Kernalléguen A, Enjalbal C, Alvarez JC, Belgacem O, Léonetti G, Lafitte D, Pélissier-Alicot AL. Synthetic cannabinoid isomers characterization by MALDI–MS3 imaging: application to single scalp hair. Anal Chim Acta. 2018;1041(24):87–93. https://doi.org/10.1016/j.aca.2018.09.036.

    Article  CAS  Google Scholar 

  29. Kamata T, Shima N, Sasaki K, Matsuta S, Takei S, Katagi M, Miki A, Zaitsu K, Nakanishi T, Sato T, Suzuki K, Tsuchihashi H. Time-course mass spectrometry imaging for depicting drug incorporation into hair. Anal Chem. 2015;87(11):5476–81. https://doi.org/10.1021/acs.analchem.5b00971.

    Article  CAS  Google Scholar 

  30. Cuypers E, Flinders B, Bosman IJ, Lusthof KJ, Van Asten AC, Tytgat JR, Heeren MA. Hydrogen peroxide reactions on cocaine in hair using imaging mass spectrometry. Forensic Sci Int. 2014;242:103–10. https://doi.org/10.1016/j.forsciint.2014.06.035.

    Article  CAS  Google Scholar 

  31. Poetzsch M, RM Baumgartner, Steuer, AE, Kraemer T. Segmental hair analysis for differentiation of tilidine intake from external contamination using LC-ESI-MS/MS and MALDI–MS/MS imaging. Drug Test Anal 2015;7(2):143–149. https://doi.org/10.1002/dta.1674.

  32. Flinders B, Cuypers E, Porta T, Varesio E, Hopfgartner G, Heeren RMA. Mass spectrometry imaging of drugs of abuse in hair. Methods Mol Biol. 2017;1618:137–47. https://doi.org/10.1007/978-1-4939-7051-3_12.

    Article  CAS  Google Scholar 

  33. Beasley E, Francese S, Bassindale T. Detection and mapping of cannabinoids in single hair samples through rapid derivatization and matrix-assisted laser desorption ionization mass spectrometry. Anal Chem. 2016;88(20):10328–34. https://doi.org/10.1021/acs.analchem.6b03551.

    Article  CAS  Google Scholar 

  34. Wang H, Wang Y. Matrix-assisted laser desorption/ionization mass spectrometric imaging for the rapid segmental analysis of methamphetamine in a single hair using umbelliferone as a matrix. Anal Chim Acta. 2017;975:42–51. https://doi.org/10.1016/j.aca.2017.04.012.

    Article  CAS  Google Scholar 

  35. Wang H, Wang Y, Wang G, Hong LZ. Matrix-assisted laser-desorption/ionization mass spectrometric imaging of olanzapine in a single hair using esculetin as a matrix. J Pharm Biomed Anal. 2017;141(15):123–31. https://doi.org/10.1016/j.jpba.2017.04.015.

    Article  CAS  Google Scholar 

  36. Lin HW, Zeng XY, Wang Q, Li YN, Sun B, Wang Y, Wang H. Identification and imaging of indole-3-carboxamide cannabinoids in hair using matrix-assisted laser-desorption/ionization mass spectrometry. Forensic Toxicol. 2020;38:216–26. https://doi.org/10.1007/s11419-019-00510-0.

    Article  CAS  Google Scholar 

  37. Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. Phytochem Rev. 2016;15:445–88. https://doi.org/10.1007/s11101-015-9440-2.

    Article  CAS  Google Scholar 

  38. Dong YH, Li B, Malitsky S, Rogachev I, Aharoni A, Kaftan F, Svatoš A, Franceschi P. Sample preparation for mass spectrometry imaging of plant tissues: a review. Front Plant Sci. 2016;7(60):1–16. https://doi.org/10.3389/fpls.2016.00060.

    Article  CAS  Google Scholar 

  39. Tong Q, Zhang C, Tu Y, Chen JF, Li Q, Zeng Z, Wang FY, Sun LN, Huang DD, Li MM, Qiu S, Chen WS. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta. 2022;238(Pt 2): 123045. https://doi.org/10.1016/j.talanta.2021.123045.

    Article  CAS  Google Scholar 

  40. Hu WY, Nie HG, Wang HY, Li N, Di SS, Pan Q, Liu JK, Han YH. Tracing the migration and transformation of metabolites in xylem during wood growth by mass spectrometry imaging. Analyst. 2022;147(8):1551–8. https://doi.org/10.1039/D1AN02251B.

    Article  CAS  Google Scholar 

  41. Wang XN, Li B. Monolithic gold nanoparticles/thiol-β-cyclodextrin-functionalized TiO2 nanowires for enhanced SALDI MS detection and imaging of natural products. Anal Chem. 2022;18;94(2):952–959. https://doi.org/10.1021/acs.analchem.1c03764.

  42. Lin HW, Yuan YL, Hang T, Wang P, Lu SJ, Wang H. Matrix-assisted laser desorption/ionization mass spectrometric imaging the spatial distribution of biodegradable vascular stents using a self-made semi-quantitative target plate. J Pharm Biomed Anal. 2022;219: 114888. https://doi.org/10.1016/j.jpba.2022.114888.

    Article  CAS  Google Scholar 

  43. Pan QF, Wang CY, Xiong ZW, Wang H, Fu XQ, Shen Q, Peng BW, Ma YN, Sun XF, Tang KX. CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of bisindole alkaloids and their precursors in catharanthus roseus. Front Plant Sci. 2019;10:931. https://doi.org/10.3389/fpls.2019.00931.

    Article  Google Scholar 

  44. Popkova Y, Schiller J. Addition of CsCl reduces ion suppression effects in the matrix-assisted laser desorption/ionization mass spectra of triacylglycerol/phosphatidylcholine mixtures and adipose tissue extracts. Rapid Commun Mass Spectrom. 2017;31(5):411–8. https://doi.org/10.1002/rcm.7806.

    Article  CAS  Google Scholar 

  45. Schiller J, Süss R, Petković M, Hilbert N, Müller M, Zschörnig O, Arnhold J, Arnold K. CsCl as an auxiliary reagent for the analysis of phosphatidylcholine mixtures by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI–TOF MS). Chem Phys Lipids. 2001;113(1–2):123–31. https://doi.org/10.1016/s0009-3084(01)00188-8.

    Article  CAS  Google Scholar 

  46. Lenz C, Wick J, Hoffmeister D. Identification of omega-N-Methyl-4-hydroxytryptamine (Norpsilocin) as a psilocybe natural product. J Nat Prod. 2017;80(10):2835–8. https://doi.org/10.1021/acs.jnatprod.7b00407.

    Article  CAS  Google Scholar 

  47. Nezhad ZS, Salazar JP, Pryce RS, Munter LM, Chaurand P. Absolute quantification of cholesterol from thin tissue sections by silver-assisted laser desorption ionization mass spectrometry imaging. Anal Bioanal Chem. 2022;414:6947–54. https://doi.org/10.1007/s00216-022-04262-6.

    Article  CAS  Google Scholar 

  48. Prentice BM, Chumbley CW, Caprioli RM. Absolute quantification of rifampicin by MALDI imaging mass spectrometry using multiple TOF/TOF events in a single laser shot. J Am Soc Mass Spectrom. 2017;28(1):136–44. https://doi.org/10.1007/s13361-016-1501-2.

    Article  CAS  Google Scholar 

  49. Lagarrigue M, Lavigne R, Tabet E, Genet V, Thomé JP, Rondel K, Guével B, Multigner L, Samson M, Pineau C. Localization and in situ absolute quantification of chlordecone in the mouse liver by MALDI imaging. Anal Chem. 2014;86:5775−5783. https://doi.org/10.1021/ac500313s.

  50. Chumbley CW, Reyzer ML, Allen JL, Marriner GA, Via LE, Barry CE III, Caprioli RM. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal Chem. 2016;88:2392–8. https://doi.org/10.1021/acs.analchem.5b04409.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Peng Ren and Dr. Jun Yuan at the Department of Pathology, Jiaxing Women and Children Hospital Affiliated to Jiaxing University for their help in the experiment of frozen section and paraffin-embedded psilocybe tissue specimen optimization.

Funding

This work was supported by the Fund from Shanghai Key Laboratory of Forensic Medicine (grant no. KF202107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2784 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, Y. Matrix-assisted laser-desorption/ionization–mass spectrometric imaging of psilocybin and its analogues in psychedelic mushrooms using a cesium chloride-coated target plate. Anal Bioanal Chem 415, 735–745 (2023). https://doi.org/10.1007/s00216-022-04467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04467-9

Keywords

Navigation