Skip to main content
Log in

Multidimensional separation and analysis of alpha-1-acid glycoprotein N-glycopeptides using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and nano-liquid chromatography tandem mass spectrometry

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bottom-up nLC-MS/MS-based glycoprotein mass spectrometry workflows rely on the generation of a mixture of non-glycosylated and glycosylated peptides via proteolysis of glycoproteins. Such methods are challenged by suppression of hydrophilic glycopeptide ions by more abundant, hydrophobic, and readily ionizable non-glycosylated peptides. Commercially available high-field asymmetric waveform ion mobility spectrometry (FAIMS) devices have recently been introduced and present a potential benefit for glycoproteomic workflows by enabling orthogonal separation of non-glycosylated peptides and glycopeptides following chromatographic separation, and prior to MS/MS analysis. However, knowledge is lacking regarding optimal FAIMS conditions for glycopeptide analyses. Here, we document optimal FAIMS compensation voltages for the transmission and analysis of human alpha-1-acid glycoprotein (AGP) tryptic N-glycopeptide ions. Further, we evaluate the effect of FAIMS on AGP glycopeptide assignment confidence by comparing the number of assigned glycopeptides at different confidence levels using a standard nLC-MS/MS method or an otherwise identical method employing FAIMS. Optimized methods will potentiate glycoproteomic analyses by increasing the number of unique glycopeptide identifications and the confidence of glycopeptide assignments. Data are available via ProteomeXchange with identifier PXD036667.

Graphical Abstract

Analysis of alpha-1-acid glycoprotein (AGP) tryptic digests via nLC-FAIMS-MS/MS (top) led to the establishment of ideal FAIMS voltages for the analysis of AGP N-glycopeptides (bottom), suggesting that FAIMS can improve the depth of glycoproteome characterization. Pairs of CV magnitudes are shown along the x-axis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [26] partner repository with the dataset identifier PXD036667.

References

  1. Holdbrooks AT, Britain CM, Bellis SL. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem. 2018;293(5):1610–22.

    Article  CAS  Google Scholar 

  2. Chandler KB, Leon DR, Kuang J, Meyer RD, Rahimi N, Costello CE. N-Glycosylation regulates ligand-dependent activation and signaling of vascular endothelial growth factor receptor 2 (VEGFR2). J Biol Chem. 2019;294(35):13117–30.

    Article  CAS  Google Scholar 

  3. Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem. 2006;281(5):2572–7.

    Article  CAS  Google Scholar 

  4. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A. 2011;108(28):11332–7.

    Article  CAS  Google Scholar 

  5. Varki A, Kannagi R, Toole B, Stanley P. Glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of glycobiology. Cold Spring Harbor NY: 2015 by The Consortium of Glycobiology Editors, La Jolla, California; 2015.

  6. Bindeman WE, Fingleton B. Glycosylation as a regulator of site-specific metastasis. Cancer Metastasis Rev. 2022;41(1):107–29.

    Article  CAS  Google Scholar 

  7. Thaysen-Andersen M, Kolarich D, Packer NH. Glycomics & glycoproteomics: From Analytics to Function. Molecular omics. 2021;17(1):8–10.

    Article  CAS  Google Scholar 

  8. Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr. 1990;499:177–96.

    Article  CAS  Google Scholar 

  9. Alpert AJ, Shukla M, Shukla AK, Zieske LR, Yuen SW, Ferguson MA, et al. Hydrophilic-interaction chromatography of complex carbohydrates. J Chromatogr A. 1994;676(1):191–222.

    Article  CAS  Google Scholar 

  10. Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic guide to enrichment strategies for mass spectrometry-based glycoproteomics. Mol Cell Proteomics. 2021;20: 100029.

    Article  CAS  Google Scholar 

  11. Alagesan K, Khilji SK, Kolarich D. It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem. 2017;409(2):529–38.

    Article  CAS  Google Scholar 

  12. Gabelica V, Marklund E. Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol. 2018;42:51–9.

    Article  CAS  Google Scholar 

  13. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst. 2015;140(5):1376–90.

  14. Creese AJ, Cooper HJ. Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal Chem. 2012;84(5):2597–601.

    Article  CAS  Google Scholar 

  15. Fang P, Ji Y, Silbern I, Viner R, Oellerich T, Pan KT, et al. Evaluation and optimization of high-field asymmetric waveform ion-mobility spectrometry for multiplexed quantitative site-specific N-glycoproteomics. Anal Chem. 2021.

  16. Swearingen KE, Moritz RL. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics. Expert Rev Proteomics. 2012;9(5):505–17.

    Article  CAS  Google Scholar 

  17. Bonneil E, Pfammatter S, Thibault P. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS). J Mass Spectrom. 2015;50(11):1181–95.

    Article  CAS  Google Scholar 

  18. Hebert AS, Prasad S, Belford MW, Bailey DJ, McAlister GC, Abbatiello SE, et al. Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer. Anal Chem. 2018;90(15):9529–37.

    Article  CAS  Google Scholar 

  19. Pfammatter S, Bonneil E, McManus FP, Prasad S, Bailey DJ, Belford M, et al. A novel differential ion mobility device expands the depth of proteome coverage and the sensitivity of multiplex proteomic measurements. Mol Cell Proteomics. 2018;17(10):2051–67.

    Article  CAS  Google Scholar 

  20. Pfammatter S, Bonneil E, McManus FP, Thibault P. Gas-Phase Enrichment of multiply charged peptide ions by differential ion mobility extend the comprehensiveness of SUMO proteome analyses. J Am Soc Mass Spectrom. 2018;29(6):1111–24.

    Article  CAS  Google Scholar 

  21. Ahmad Izaham AR, Ang CS, Nie S, Bird LE, Williamson NA, Scott NE. What are we missing by using hydrophilic enrichment? Improving bacterial glycoproteome coverage using total proteome and FAIMS analyses. J Proteome Res. 2021;20(1):599–612.

    Article  CAS  Google Scholar 

  22. Pathak P, Baird MA, Shvartsburg AA. High-resolution ion mobility separations of isomeric glycoforms with variations on the peptide and glycan levels. J Am Soc Mass Spectrom. 2020;31(7):1603–9.

    Article  CAS  Google Scholar 

  23. Bierhuizen MF, De Wit M, Govers CA, Ferwerda W, Koeleman C, Pos O, et al. Glycosylation of three molecular forms of human alpha 1-acid glycoprotein having different interactions with concanavalin A. Variations in the occurrence of di-, tri-, and tetraantennary glycans and the degree of sialylation. Eur J Biochem. 1988;175(2):387–94.

  24. Hunter AP, Games DE. Evaluation of glycosylation site heterogeneity and selective identification of glycopeptides in proteolytic digests of bovine alpha 1-acid glycoprotein by mass spectrometry. Rapid Commun Mass Spectrom. 1995;9(1):42–56.

    Article  CAS  Google Scholar 

  25. Chang D, Klein JA, Nalehua MR, Hackett WE, Zaia J. Data-independent acquisition mass spectrometry for site-specific glycoproteomics characterization of SARS-CoV-2 spike protein. Anal Bioanal Chem. 2021;413(29):7305–18.

    Article  CAS  Google Scholar 

  26. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50.

    Article  CAS  Google Scholar 

  27. Wei J, Wu J, Tang Y, Ridgeway ME, Park MA, Costello CE, et al. Characterization and quantification of highly sulfated glycosaminoglycan isomers by gated-trapped ion mobility spectrometry negative electron transfer dissociation MS/MS. Anal Chem. 2019;91(4):2994–3001.

    Article  CAS  Google Scholar 

  28. Wei J, Tang Y, Bai Y, Zaia J, Costello CE, Hong P, et al. Toward automatic and comprehensive glycan characterization by online PGC-LC-EED MS/MS. Anal Chem. 2020;92(1):782–91.

    Article  CAS  Google Scholar 

  29. Riley NM, Malaker SA, Driessen MD, Bertozzi CR. Optimal dissociation methods differ for N- and O-glycopeptides. J Proteome Res. 2020;19(8):3286–301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DEMR was supported by the QBIC program at Florida International University. KBC is supported by NIH NHLBI K12 (5K12HL141953-03). RS is supported by NCI U01 CA225730 (Alliance of Glycobiologists for Cancer Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Brown Chandler.

Ethics declarations

Ethics approval

N/A. No research involving humans and/or animals.

Conflict of interest

The authors declare no competing interests.

Source of biological material

All reagents were obtained from commercially available sources.

Statement on animal welfare

No research was performed involving animals.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Supplementary Information

Below is the link to the electronic supplementary material.

216_2022_4435_MOESM1_ESM.xlsx

Electronic Supplementary Material Figure S1: FAIMS Analyses of Unenriched, Tryptic AGP digests Over a Range of Compensation Voltages. (XLSX 62 KB)

216_2022_4435_MOESM2_ESM.xlsx

Electronic Supplementary Material Figure S2: Comparison of CV Combinations in Unenriched AGP (Unique Glycopeptides). (XLSX 128 KB)

216_2022_4435_MOESM3_ESM.xlsx

Electronic Supplementary Material Figure S3: Comparison of a Standard nLC-MS/MS Method or an Identical Method with FAIMS, Alternating Continuously between Three Compensation Voltages (CV) (-35V/ -40V/ -50V). (XLSX 4209 KB)

216_2022_4435_MOESM4_ESM.pdf

Electronic Supplementary Material Figure S4: Venn diagrams comparing (a) of unique (and shared, overlapping) N-glycopeptides between -35V, -40V, and -50V FAIMS settings. (b) unique (and shared, overlapping) N-glycopeptides between -35V and -50V FAIMS settings, by charge state (z = 2+ to 5+). (PDF 300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandler, K.B., Marrero Roche, D.E. & Sackstein, R. Multidimensional separation and analysis of alpha-1-acid glycoprotein N-glycopeptides using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and nano-liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 415, 379–390 (2023). https://doi.org/10.1007/s00216-022-04435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04435-3

Keywords

Navigation