Skip to main content

Advertisement

Log in

Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The use of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MSn) for the glycoproteomic characterization of glycopeptides is a growing field of research. The N- and O-glycosylated peptides (N- and O-glycopeptides) analyzed typically originate from protease-digested glycoproteins where many of them are expected to be biomedically important. Examples of LC-MS2 and MS3 fragmentation strategies used to pursue glycan structure, peptide identity and attachment-site identification analyses of glycopeptides are described in this review. MS2 spectra, using the CID and HCD fragmentation techniques of a complex biantennary N-glycopeptide and a core 1 O-glycopeptide, representing two examples of commonly studied glycopeptide types, are presented. A few practical tips for accomplishing glycopeptide analysis using reversed-phase LC-MSn shotgun proteomics settings, together with references to the latest glycoproteomic studies, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pang P.-C., Chiu P.C.N., Lee C.-L., Chang L.-Y., Panico M., Morris H.R., Haslam S.M., Khoo K.-H., Clark G.F., Yeung W.S.B., Dell A.: Human sperm binding is mediated by the sialyl-lewis(x) oligosaccharide on the zona pellucida. Science. 333, 1761–1764 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. Radhakrishnan P., Dabelsteen S., Madsen F.B., Francavilla C., Kopp K.L., Steentoft C., Vakhrushev S.Y., Olsen J.V., Hansen L., Bennett E.P., Woetmann A., Yin G., Chen L., Song H., Bak M., Hlady R.A., Peters S.L., Opavsky R., Thode C., Qvortrup K., Schjoldager K.T.-B.G., Clausen H., Hollingsworth M.A., Wandall H.H.: Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl. Acad. Sci. U. S. A. 111, E4066–E4075 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blaum B.S., Hannan J.P., Herbert A.P., Kavanagh D., Uhrín D., Stehle T.: Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat. Chem. Biol. 11, 77–82 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Shade K.-T.C., Platzer B., Washburn N., Mani V., Bartsch Y.C., Conroy M., Pagan J.D., Bosques C., Mempel T.R., Fiebiger E., Anthony R.M.: A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med. 212, 457–467 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dodds E.D.: Gas-phase dissociation of glycosylated peptide ions. Mass Spectrom. Rev. 31, 666–682 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. Thaysen-Andersen M., Larsen M.R., Packer N.H., Palmisano G.: Structural analysis of glycoprotein sialylation – part I: pre-LC-MS analytical strategies. RSC Adv. 3, 22683 (2013)

    Article  CAS  Google Scholar 

  7. Palmisano G., Larsen M.R., Packer N.H., Thaysen-Andersen M.: Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv. 3, 22706 (2013)

    Article  CAS  Google Scholar 

  8. Nilsson J., Halim A., Grahn A., Larson G.: Targeting the glycoproteome. Glycoconj. J. 30, 119–136 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zauner G., Kozak R.P., Gardner R.A., Fernandes D.L., Deelder A.M., Wuhrer M.: Protein O-glycosylation analysis. Biol. Chem. 393, 687–708 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Wuhrer M.: Glycomics using mass spectrometry. Glycoconj. J. 30, 11–22 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thaysen-Andersen M., Packer N.H.: Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim. Biophys. Acta. 1844, 1437–1452 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Levery S.B., Steentoft C., Halim A., Narimatsu Y., Clausen H., Vakhrushev S.Y.: Advances in mass spectrometry driven O-glycoproteomics. Biochim. Biophys. Acta. 1850, 33–42 (2014)

    Article  PubMed  Google Scholar 

  13. Satomi Y., Shimonishi Y., Takao T.: N-glycosylation at Asn(491) in the Asn-Xaa-Cys motif of human transferrin. FEBS Lett. 576, 51–56 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Varki, A.: Essentials of glycobiology. (2009).

    Google Scholar 

  15. Gill D.J., Clausen H., Bard F.: Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol. 21, 149–158 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Steentoft C., Vakhrushev S.Y., Vester-Christensen M.B., Schjoldager K.T.-B.G., Kong Y., Bennett E.P., Mandel U., Wandall H., Levery S.B., Clausen H.: Mining the O-glycoproteome using zinc-finger nuclease–glycoengineered SimpleCell lines. Nat. Methods. 8, 977–982 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Steentoft C., Bennett E.P., Schjoldager K.T.-B.G., Vakhrushev S.Y., Wandall H.H., Clausen H.: Precision genome editing: a small revolution for glycobiology. Glycobiology. 24, 663–680 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Nordén R., Halim A., Nyström K., Bennett E.P., Mandel U., Olofsson S., Nilsson J., Larson G.: O-linked glycosylation of the mucin domain of the herpes simplex virus type 1 specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner. J. Biol. Chem. 290, 5078–5091 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bagdonaite I., Nordén R., Joshi H.J., Dabelsteen S., Nyström K., Vakhrushev S.Y., Olofsson S., Wandall H.H.: A strategy for O-glycoproteomics of enveloped viruses-the O-glycoproteome of herpes simplex virus type 1. PLoS Pathog. 11, e1004784 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nilsson J., Nilsson J., Larson G., Grahn A.: Characterization of site-specific O-glycan structures within the mucin-like domain of alpha-dystroglycan from human skeletal muscle. Glycobiology. 20, 1160–1169 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. Gomez Toledo A., Raducu M., Cruces J., Nilsson J., Halim A., Larson G., Rüetschi U., Grahn A.: O-mannose and O-N-acetyl galactosamine glycosylation of mammalian α-dystroglycan is conserved in a region-specific manner. Glycobiology. 22, 1413–1423 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. Noborn F., Gomez Toledo A., Sihlbom C., Lengqvist J., Fries E., Kjellén L., Nilsson J., Larson G.: Identification of chondroitin sulfate linkage region glycopeptides reveals prohormones as a novel class of proteoglycans. Mol. Cell. Proteomics. 14, 41–49 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nilsson J., Halim A., Moslemi A.-R., Pedersen A., Nilsson J., Larson G., Oldfors A.: Molecular pathogenesis of a new glycogenosis caused by a glycogenin-1 mutation. Biochim. Biophys. Acta. 1822, 493–499 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Nilsson J., Halim A., Larsson E., Moslemi A.-R., Oldfors A., Larson G., Nilsson J.: LC-MS/MS characterization of combined glycogenin-1 and glycogenin-2 enzymatic activities reveals their self-glucosylation preferences. Biochim. Biophys. Acta. 1844, 398–405 (2013)

    Article  PubMed  Google Scholar 

  25. Huddleston M.J., Bean M.F., Carr S.A.: Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65, 877–884 (1993)

    Article  CAS  PubMed  Google Scholar 

  26. Carr S.A., Huddleston M.J., Bean M.F.: Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci. 2, 183–196 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conboy J.J., Henion J.D.: The determination of glycopeptides by liquid chromatography/mass spectrometry with collision-induced dissociation. J. Am. Soc. Mass Spectrom. 3, 804–814 (1992)

    Article  CAS  PubMed  Google Scholar 

  28. Plematl A., Demelbauer U.M., Josic D., Rizzi A.: Determination of the site-specific and isoform-specific glycosylation in human plasma-derived antithrombin by IEF and capillary HPLC-ESI-MS/MS. Proteomics. 5, 4025–4033 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Imre T., Schlosser G., Pocsfalvi G., Siciliano R., Molnár-Szöllosi E., Kremmer T., Malorni A., Vékey K.: Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography-electrospray mass spectrometry. J. Mass Spectrom. 40, 1472–1483 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Stimson E., Hope J., Chong A., Burlingame A.L.: Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/electrospray mass spectrometry and exoglycosidase digestions. Biochemistry. 38, 4885–4895 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Satomi Y., Shimonishi Y., Hase T., Takao T.: Site-specific carbohydrate profiling of human transferrin by Nano-flow liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2983–2988 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Brogren H., Sihlbom C., Wallmark K., Lonn M., Deinum J., Karlsson L., Jern S.: Heterogeneous glycosylation patterns of human PAI-1 may reveal its cellular origin. Thromb. Res. 122, 271–281 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. Brown K.J., Vanderver A., Hoffman E.P., Schiffmann R., Hathout Y.: Characterization of transferrin glycopeptide structures in human cerebrospinal fluid. Int. J. Mass Spectrom. 312, 97–106 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kolarich D., Weber A., Turecek P.L., Schwarz H.-P., Altmann F.: Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics. 6, 3369–3380 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. Roepstorff P., Fohlman J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 11, 601 (1984)

    Article  CAS  PubMed  Google Scholar 

  36. Medzihradszky K.F.: Characterization of protein N-glycosylation. Methods Enzymol. 405, 116–138 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Harazono A., Kawasaki N., Itoh S., Hashii N., Ishii-Watabe A., Kawanishi T., Hayakawa T.: Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Biochem. 348, 259–268 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Harazono A., Kawasaki N., Itoh S., Hashii N., Matsuishi-Nakajima Y., Kawanishi T., Yamaguchi T.: Simultaneous glycosylation analysis of human serum glycoproteins by high-performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. B. 869, 20–30 (2008)

    Article  CAS  Google Scholar 

  39. Zauner G., Koeleman C.A.M., Deelder A.M., Wuhrer M.: Protein glycosylation analysis by HILIC-LC-MS of proteinase K-generated N- and O-glycopeptides. J. Sep. Sci. 33, 903–910 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. Henning S., Peter-Katalinic J., Pohlentz G.: Structure elucidation of glycoproteins by direct nanoESI MS and MS/MS analysis of proteolytic glycopeptides. J. Mass Spectrom. 42, 1415–1421 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. Domon B., Costello C.: A systematic nomenclature for carbohydrate fragmentations in fab-Ms Ms spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  42. Spik G., Coddeville B., Montreuil J.: Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie. 70, 1459–1469 (1988)

    Article  CAS  PubMed  Google Scholar 

  43. Krokhin O.V., Ens W., Standing K.G.: Characterizing degradation products of peptides containing N-terminal Cys residues by (off-line high-performance liquid chromatography)/matrix-assisted laser desorption/ionization quadrupole time-of-flight measurements. Rapid Commun. Mass Spectrom. 17, 2528–2534 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. Khandke K.M., Fairwell T., Chait B.T., Manjula B.N.: Influence of ions on cyclization of the amino terminal glutamine residues of tryptic peptides of streptococcal Pepm49 protein - resolution of cyclized peptides by hplc and characterization by mass-spectrometry. Int. J. Pept. Protein Res. 34, 118–123 (1989)

    Article  CAS  PubMed  Google Scholar 

  45. Krokhin O.V., Antonovici M., Ens W., Wilkins J.A., Standing K.G.: Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal. Chem. 78, 6645–6650 (2006)

    Article  CAS  PubMed  Google Scholar 

  46. Semenov A.G., Postnikov A.B., Tamm N.N., Seferian K.R., Karpova N.S., Bloshchitsyna M.N., Koshkina E.V., Krasnoselsky M.I., Serebryanaya D.V., Katrukha A.G.: Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin. Chem. 55, 489–498 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. Schjoldager K.T.-B.G., Vester-Christensen M.B., Bennett E.P., Levery S.B., Schwientek T., Yin W., Blixt O., Clausen H.: O-glycosylation modulates proprotein convertase activation of angiopoietin-like protein 3: possible role of polypeptide GalNAc-transferase-2 in regulation of concentrations of plasma lipids. J Biol Chem. 285, 36293–36303 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schjoldager K.T.-B.G., Clausen H.: Biochimica et biophysica acta. BBA - General Subjects. 1820, 2079–2094 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. Halim A., Brinkmalm G., Rüetschi U., Westman-Brinkmalm A., Portelius E., Zetterberg H., Blennow K., Larson G., Nilsson J.: Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid {beta}-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. U. S. A. 108, 11848–11853 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zougman A., Pilch B., Podtelejnikov A., Kiehntopf M., Schnabel C., Kumar C., Mann M.: Integrated analysis of the cerebrospinal fluid peptidome and proteome. J. Proteome Res. 7, 386–399 (2008)

    Article  CAS  PubMed  Google Scholar 

  51. Halim A., Rüetschi U., Larson G., Nilsson J.: LC-MS/MS characterization of O-glycosylation sites and glycan structures of human cerebrospinal fluid glycoproteins. J. Proteome Res. 12, 573–584 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. Demelbauer U.M., Zehl M., Plematl A., Allmaier G., Rizzi A.: Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun. Mass Spectrom. 18, 1575–1582 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. Nilsson J., Rüetschi U., Halim A., Hesse C., Carlsohn E., Brinkmalm G., Larson G.: Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods. 6, 809–811 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. Halim, A., Nilsson, J., Rüetschi, U., Hesse, C., Larson, G.: Human urinary glycoproteomics; attachment site specific analysis of N-and O-linked glycosylations by CID and ECD. Mol. Cell. Proteomics. 11, M111.013649–1–17 (2011).

  55. Wu S.-W., Liang S.-Y., Pu T.-H., Chang F.-Y., Khoo K.-H.: Sweet-heart - an integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J. Proteomics. 84C, 1–16 (2013)

    Google Scholar 

  56. Woo C.M., Iavarone A.T., Spiciarich D.R., Palaniappan K.K., Bertozzi C.R.: Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat. Methods. 12, 561–567 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng K., Chen R., Seebun D., Ye M., Figeys D., Zou H.: Large-scale characterization of intact N-glycopeptides using an automated glycoproteomic method. J. Proteomics. 110, 145–154 (2014)

  58. Liu M., Zhang Y., Chen Y., Yan G., Shen C., Cao J., Zhou X., Liu X., Zhang L., Shen H., Lu H., He F., Yang P.: Efficient and accurate glycopeptide identification pipeline for high-throughput site-specific N-glycosylation analysis. J. Proteome Res. 13, 3121–3129 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. Goyallon A., Cholet S., Chapelle M., Junot C., Fenaille F.: Evaluation of a combined glycomics and glycoproteomics approach for studying the major glycoproteins present in biofluids: application to cerebrospinal fluid. Rapid Commun. Mass Spectrom. 29, 461–473 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. Joenvaara S., Ritamo I., Peltoniemi H., Renkonen R.: N-glycoproteomics - an automated workflow approach. Glycobiology. 18, 339–349 (2008)

    Article  CAS  PubMed  Google Scholar 

  61. Peltoniemi H., Joenväärä S., Renkonen R.: De novo glycan structure search with the CID MS/MS spectra of native N-glycopeptides. Glycobiology. 19, 707–714 (2009)

    Article  CAS  PubMed  Google Scholar 

  62. Saraswat M., Joenvaara S., Musante L., Peltoniemi H., Holthofer H., Renkonen R.: N-glycoproteomics of urinary exosomes. Mol. Cell. Proteomics. 14, 263–276 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dallas D.C., Martin W.F., Hua S., German J.B.: Automated glycopeptide analysis–review of current state and future directions. Brief. Bioinform. 14, 361–374 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liang S.-Y., Wu S.-W., Pu T.-H., Chang F.-Y., Khoo K.-H.: An adaptive workflow coupled with random forest algorithm to identify intact N-glycopeptides detected from mass spectrometry. Bioinformatics. 30, 1908–1916 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. He L., Xin L., Shan B., Lajoie G.A., Ma B.: GlycoMaster DB: software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry. J. Proteome Res. 13, 3881–3895 (2014)

    Article  CAS  PubMed  Google Scholar 

  66. Yin X., Bern M., Xing Q., Ho J., Viner R., Mayr M.: Glycoproteomic analysis of the secretome of human endothelial cells. Mol. Cell. Proteomics. 12, 956–978 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Parker B.L., Thaysen-Andersen M., Solis N., Scott N.E., Larsen M.R., Graham M.E., Packer N.H., Cordwell S.J.: Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J. Proteome Res. 12, 5791–5800 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. Lee Y., Kockx M., Raftery M.J., Jessup W., Griffith R., Kritharides L.: Glycosylation and sialylation of macrophage-derived human apolipoprotein E analyzed by SDS-PAGE and mass spectrometry: evidence for a novel site of glycosylation on Ser290. Mol. Cell. Proteomics. 9, 1968–1981 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marino, F., Bern, M., Mommen, G.P.M., Leney, A.C., van Gaans-van den Brink, J.A.M., Bonvin, A.M.J.J., Becker, C., van Els, C.A.C.M., Heck, A.J.R.: Extended O-GlcNAc on HLA class-I-bound peptides. J. Am. Chem. Soc. 137, 10922–10925 (2015).

  70. Halim A., Westerlind U., Pett C., Schorlemer M., Rüetschi U., Brinkmalm G., Sihlbom C., Lengqvist J., Larson G., Nilsson J.: Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J. Proteome Res. 13, 6024–6032 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Hunt D.F., Yates J.R., Shabanowitz J., Winston S., Hauer C.R.: Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 83, 6233–6237 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loo J.A., Edmonds C.G., Smith R.D.: Tandem mass spectrometry of very large molecules. 2. Dissociation of multiply charged proline-containing proteins from electrospray ionization. Anal. Chem. 65, 425–438 (1993)

    Article  CAS  PubMed  Google Scholar 

  73. Gerken T.A., Jamison O., Perrine C.L., Collette J.C., Moinova H., Ravi L., Markowitz S.D., Shen W., Patel H., Tabak L.A.: Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem. 286, 14493–14507 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Darula, Z., Sherman, J., Medzihradszky, K.F.: How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides. Mol. Cell. Proteomics 11, O111.016774–1–10 (2012)

  75. Olsen J.V., Macek B., Lange O., Makarov A., Horning S., Mann M.: Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods. 4, 709–712 (2007)

    Article  CAS  PubMed  Google Scholar 

  76. Scott N.E., Parker B.L., Connolly A.M., Paulech J., Edwards A.V.G., Crossett B., Falconer L., Kolarich D., Djordjevic S.P., Højrup P., Packer N.H., Larsen M.R., Cordwell S.J.: Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol. Cell. Proteomics. 10, M000031–MCP201, 1–18 (2011)

  77. Segu Z.M., Mechref Y.: Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun. Mass Spectrom. 24, 1217–1225 (2010)

    Article  CAS  PubMed  Google Scholar 

  78. Zhao P., Viner R., Teo C.F., Boons G.-J., Horn D., Wells L.: Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J. Proteome Res. 10, 4088–4104 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu J., Schorlemer M., Gomez Toledo A., Pett C., Sihlbom C., Larson G., Westerlind U., Nilsson J.: Distinctive MS/MS fragmentation pathways of glycopeptide-generated oxonium ions provide evidence of the glycan structure. Chem. Eur. J. 22, 1114–1124 (2016)

    Article  CAS  PubMed  Google Scholar 

  80. Mayampurath A.M., Wu Y., Segu Z.M., Mechref Y., Tang H.: Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun. Mass Spectrom. 25, 2007–2019 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. Wang D., Hincapie M., Rejtar T., Karger B.L.: Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal. Chem. 83, 2029–2037 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Medzihradszky K.F., Kaasik K., Chalkley R.J.: Characterizing sialic acid variants at the glycopeptide level. Anal. Chem. 87, 3064–3071 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mirgorodskaya E., Hassan H., Clausen H., Roepstorff P.: Mass spectrometric determination of O-glycosylation sites using beta-elimination and partial acid hydrolysis. Anal. Chem. 73, 1263–1269 (2001)

    Article  CAS  PubMed  Google Scholar 

  84. Håkansson K., Cooper H.J., Emmett M.R., Costello C.E., Marshall A.G., Nilsson C.L.: Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal. Chem. 73, 4530–4536 (2001)

    Article  PubMed  Google Scholar 

  85. Trinidad J.C., Schoepfer R., Burlingame A.L., Medzihradszky K.F.: N- and O-glycosylation in the murine synaptosome. Mol. Cell. Proteomics. 12, 3474–3488 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Medzihradszky K.F., Kaasik K., Chalkley R.J.: Tissue-specific glycosylation at the glycopeptide level. Mol. Cell. Proteomics. 14, 2103–2110 (2015)

    Article  CAS  PubMed  Google Scholar 

  87. Perdivara I., Petrovich R., Allinquant B., Deterding L.J., Tomer K.B., Przybylski M.: Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J. Proteome Res. 8, 631–642 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Singh C., Zampronio C.G., Creese A.J., Cooper H.J.: Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J. Proteome Res. 11, 4517–4525 (2012)

    Article  CAS  PubMed  Google Scholar 

  89. Ali L., Flowers S.A., Jin C., Bennet E.P., Ekwall A.-K.H., Karlsson N.G.: The O-glycomap of lubricin, a novel mucin responsible for joint lubrication, identified by site-specific glycopeptide analysis. Mol. Cell. Proteomics. 13, 3396–3409 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Westerlind U.: Synthetic glycopeptides and glycoproteins with applications in biological research. Beilstein J Org Chem. 8, 804–818 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang P., Nilsson J., Brinkmalm G., Larson G., Huang X.: Synthesis aided structural determination of amyloid-beta(1–15) glycopeptides, new biomarkers for Alzheimer’s disease. Chem Commun (Camb). 50(15067–15070), (2014)

  92. Wada Y., Azadi P., Costello C.E., Dell A., Dwek R.A., Geyer H., Geyer R., Kakehi K., Karlsson N.G., Kato K., Kawasaki N., Khoo K.-H., Kim S., Kondo A., Lattova E., Mechref Y., Miyoshi E., Nakamura K., Narimatsu H., Novotny M.V., Packer N.H., Perreault H., Peter-Katalinic J., Pohlentz G., Reinhold V.N., Rudd P.M., Suzuki A., Taniguchi N.: Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology. 17, 411–422 (2007)

    Article  CAS  PubMed  Google Scholar 

  93. Leymarie N., Griffin P.J., Jonscher K., Kolarich D., Orlando R., McComb M., Zaia J., Aguilan J., Alley W.R., Altmann F., Ball L.E., Basumallick L., Bazemore-Walker C.R., Behnken H., Blank M.A., Brown K.J., Bunz S.-C., Cairo C.W., Cipollo J.F., Daneshfar R., Desaire H., Drake R.R., Go E.P., Goldman R., Gruber C., Halim A., Hathout Y., Hensbergen P.J., Horn D.M., Hurum D., Jabs W., Larson G., Ly M., Mann B.F., Marx K., Mechref Y., Meyer B., Möginger U., Neusüβ C., Nilsson J., Novotny M.V., Nyalwidhe J.O., Packer N.H., Pompach P., Reiz B., Resemann A., Rohrer J.S., Ruthenbeck A., Sanda M., Schulz J.M., Schweiger-Hufnagel U., Sihlbom C., Song E., Staples G.O., Suckau D., Tang H., Thaysen-Andersen M., Viner R.I., An Y., Valmu L., Wada Y., Watson M., Windwarder M., Whittal R., Wuhrer M., Zhu Y., Zou C.: Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol. Cell. Proteomics. 12, 2935–2951 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stavenhagen K., Hinneburg H., Thaysen-Andersen M., Hartmann L., Varón Silva D., Fuchser J., Kaspar S., Rapp E., Seeberger P.H., Kolarich D.: Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J. Mass Spectrom. 48(i), (2013)

  95. Plomp R., Hensbergen P.J., Rombouts Y., Zauner G., Dragan I., Koeleman C.A.M., Deelder A.M., Wuhrer M.: Site-specific N-glycosylation analysis of human immunoglobulin e. J. Proteome Res. 13, 536–546 (2014)

    Article  CAS  PubMed  Google Scholar 

  96. Pucic Bakovic, M., Selman, M.H.J., Hoffmann, M., Rudan, I., Campbell, H., Deelder, A.M., Lauc, G., Wuhrer, M.: High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12, 821–831 (2013).

  97. Nilsson J., Larson G.: Sialic acid capture-and-release and LC-MS(n) analysis of glycopeptides. Methods Mol. Biol. 951, 79–100 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. Darula Z., Medzihradszky K.F.: Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol. Cell. Proteomics. 8, 2515–2526 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ly M., Leach F.E., Laremore T.N., Toida T., Amster I.J., Linhardt R.J.: The proteoglycan bikunin has a defined sequence. Nat. Chem. Biol. 7, 827–833 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gomez Toledo A., Nilsson J., Noborn F., Sihlbom C., Larson G.: Positive mode LC-MS/MS analysis of chondroitin sulfate modified glycopeptides derived from light and heavy chains of the human inter-α-trypsin inhibitor complex. Mol. Cell. Proteomics. 14, 3118–3131 (2015)

    Article  PubMed  Google Scholar 

  101. Kolarich D., Jensen P.H., Altmann F., Packer N.H.: Determination of site-specific glycan heterogeneity on glycoproteins. Nat. Protoc. 7, 1285–1298 (2012)

    Article  CAS  PubMed  Google Scholar 

  102. Jensen P.H., Karlsson N.G., Kolarich D., Packer N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7, 1299–1310 (2012)

    Article  CAS  PubMed  Google Scholar 

  103. Song E., Pyreddy S., Mechref Y.: Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 26, 1941–1954 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ye H., Boyne M.T., Buhse L.F., Hill J.: Direct approach for qualitative and quantitative characterization of glycoproteins using tandem mass tags and an LTQ orbitrap XL electron transfer dissociation hybrid mass spectrometer. Anal. Chem. 85, 1531–1539 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank past and present members of the glycobiology group at clinical chemistry headed by Prof. Göran Larson. Financial support from the following foundations is gratefully acknowledged: Magnus Bergvall, Demensförbundet, WoM Lundgren and the Alzheimer foundation, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Nilsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilsson, J. Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 33, 261–272 (2016). https://doi.org/10.1007/s10719-016-9649-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9649-3

Keywords

Navigation