Skip to main content
Log in

Authentication of fish oil (omega-3) supplements using class-oriented chemometrics and comprehensive two-dimensional gas chromatography coupled to mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Food supplement authentication is an important concern worldwide due to the ascending consumption related to health benefits and its lack of effective regulation in underdeveloped countries, making it a target of fraudulent activities. In this context, this study evaluated fish oil supplements by comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC–MS) to obtain fingerprints, which were used to build predictive models for automated authentication of the most popular products sold in Brazil. The authentication process relied on a one-class classifier model using data-driven soft independent modeling of class analogy (DD-SIMCA). The output of the model was a binary classifier: certified IFOS fish oils and non-certified ones — regardless of the source of adulteration. The compositional analysis showed a significant variation in the samples, which validated the need for reliable statistical models. The DD-SIMCA algorithm is still incipient in GC×GC studies, but it proved to be an excellent tool for authenticity purposes, achieving a chemometric model with a sensitivity of 100%, specificity of 98.6%, and accuracy of 99.0% for fish oil authentication. Finally, orthogonalized partial least square discriminant analysis (OPLS-DA) was used to identify the features that distinguished the groups, which ascertained the results of the DD-SIMCA model that IFOS-certified oils are positively correlated to omega-3 fatty acids, including eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fibigr J, Šatínský D, Solich P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal Chim Acta. 2018;1036:1–15. https://doi.org/10.1016/j.aca.2018.08.017.

    Article  CAS  PubMed  Google Scholar 

  2. Costa JG, Vidovic B, Saraiva N, Costa do Ceu M, Del Favero G, Marko D, Oliveira NG, Fernandes AS. Contaminants: a dark side of food supplements? Free Radic Res. 2019;53:1113–35. https://doi.org/10.1080/10715762.2019.1636045.

    Article  CAS  PubMed  Google Scholar 

  3. Kowalska A, Bieniek M, Manning L. Food supplements’ non-conformity in Europe – Poland: a case study. Trends Food Sci Technol. 2019;93:262–70. https://doi.org/10.1016/j.tifs.2019.09.022.

    Article  CAS  Google Scholar 

  4. Czepielewska E, Makarewicz-Wujec M, Różewski F, Wojtasik E, Kozłowska-Wojciechowska M. Drug adulteration of food supplements: a threat to public health in the European Union? Regul Toxicol Pharmacol. 2018;97:98–102. https://doi.org/10.1016/j.yrtph.2018.06.014.

    Article  CAS  PubMed  Google Scholar 

  5. Economic impact of the dietary supplement industry. https://www.crnusa.org/resources/economic-impact-dietary-supplement-industry accessed 20 Aug 2022.

  6. Mishra S, Stieman B, JGahche J, Potischman N. Data brief 399: dietary supplement use among adults: United States, 2017–2018. Hyattsville. 2021.

  7. Kamiński M, Kręgielska-Narożna M, Bogdański P. Determination of the popularity of dietary supplements using Google Search rankings. Nutrients. 2020;12:908. https://doi.org/10.3390/nu12040908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellulu MS, Khaza’ai H, Abed Y, Rahmat A, Ismail P, Ranneh Y. Role of fish oil in human health and possible mechanism to reduce the inflammation. Inflammopharmacology. 2015;23:79–89. https://doi.org/10.1007/s10787-015-0228-1.

    Article  CAS  PubMed  Google Scholar 

  9. Siscovick DS, Barringer TA, Fretts AM, Wu JHY, Lichtenstein AH, Costello RB, Kris-Etherton PM, Jacobson TA, Engler MB, Alger HM, Appel LJ, Mozaffarian D. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease. Circulation. 2017;135: https://doi.org/10.1161/CIR.0000000000000482

  10. Gao H, Geng T, Huang T, Zhao Q. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis. Lipids Health Dis. 2017;16:131. https://doi.org/10.1186/s12944-017-0528-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris WS. Fish oil supplementation: evidence for health benefits. Cleve Clin J Med. 2004;71:208–10. https://doi.org/10.3949/ccjm.71.3.208.

    Article  PubMed  Google Scholar 

  12. Johnson M. Omega-3, omega-6 and omega-9 fatty acids: implications for cardiovascular and other diseases. J Glycomics Lipidomics. 2014;04: https://doi.org/10.4172/2153-0637.1000123

  13. Galuch M, Carbonera F, Magon T, da Silveira R, dos Santos P, Pizzo J, Santos O, Visentainer J. Quality assessment of omega-3 supplements available in the Brazilian market. J Braz Chem Soc. 2017: https://doi.org/10.21577/0103-5053.20170177

  14. Rohman A, Putri AR, Irnawati WA, Nisa K, Lestari LA. The employment of analytical techniques and chemometrics for authentication of fish oils: a review. Food Control. 2021;124:107864. https://doi.org/10.1016/j.foodcont.2021.107864.

    Article  CAS  Google Scholar 

  15. IFOS. https://certifications.nutrasource.ca/about/how-certifications-work/ifos. Accessed 6 May 2022.

  16. Cascant MM, Breil C, Fabiano-Tixier AS, Chemat F, Garrigues S, de la Guardia M. Determination of fatty acids and lipid classes in salmon oil by near infrared spectroscopy. Food Chem. 2018;239:865–71. https://doi.org/10.1016/j.foodchem.2017.06.158.

    Article  CAS  PubMed  Google Scholar 

  17. Hall DW, Marshall SN, Gordon KC, Killeen DP. Rapid quantitative determination of squalene in shark liver oils by Raman and IR spectroscopy. Lipids. 2016;51:139–47. https://doi.org/10.1007/s11745-015-4097-6.

    Article  CAS  PubMed  Google Scholar 

  18. Rohman A, Che Man YB. Analysis of chicken fat as adulterant in cod liver oil using Fourier transform infrared (FTIR) spectroscopy and chemometrics Análisis de grasa de pollo como adulterante en aceite de hígado de bacalao usando espectroscopía infrarroja con transformada de Fo. CyTA - J Food. 2011;9:187–91. https://doi.org/10.1080/19476337.2010.510211.

    Article  CAS  Google Scholar 

  19. Giese E, Winkelmann O, Rohn S, Fritsche J. Determining quality parameters of fish oils by means of 1H nuclear magnetic resonance, mid-infrared, and near-infrared spectroscopy in combination with multivariate statistics. Food Res Int. 2018;106:116–28. https://doi.org/10.1016/j.foodres.2017.12.041.

    Article  CAS  PubMed  Google Scholar 

  20. Killeen DP, Card A, Gordon KC, Perry NB. First use of handheld Raman spectroscopy to analyze omega-3 fatty acids in intact fish oil capsules. Appl Spectrosc. 2020;74:365–71. https://doi.org/10.1177/0003702819877415.

    Article  CAS  PubMed  Google Scholar 

  21. Giese E, Rohn S, Fritsche J. Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared spectroscopy data. Anal Bioanal Chem. 2019;411:6931–42. https://doi.org/10.1007/s00216-019-02063-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Standal IB, Axelson DE, Aursand M. 13C NMR as a tool for authentication of different gadoid fish species with emphasis on phospholipid profiles. Food Chem. 2010;121:608–15. https://doi.org/10.1016/j.foodchem.2009.12.074.

    Article  CAS  Google Scholar 

  23. Araujo P, Tilahun E, Zeng Y. A novel strategy for discriminating marine oils by using the positional distribution (sn-1, sn-2, sn-3) of omega-3 polyunsaturated fatty acids in triacylglycerols. Talanta. 2018;182:32–7. https://doi.org/10.1016/j.talanta.2018.01.030.

    Article  CAS  PubMed  Google Scholar 

  24. Suh JH, Ho C-T, Wang Y. Evaluation of carbonyl species in fish oil: an improved LC–MS/MS method. Food Control. 2017;78:463–8. https://doi.org/10.1016/j.foodcont.2017.03.014.

    Article  CAS  Google Scholar 

  25. Chatterjee NS, Singh A, Vishnu KV, Ajeeshkumar KK, Anandan R, Ashok Kumar K, Mathew S. Authentication of two bio-active fish oils by qualitative lipid profiling using semi-targeted approach: an exploratory study. J AOAC Int. 2020;103:78–82. https://doi.org/10.5740/jaoacint.19-0208.

    Article  PubMed  Google Scholar 

  26. Gómez-Cortés P, Camiña JM. Oxidomics on the omega-3 volatile degradation pattern to determine differences between vegetable and marine oils. Food Res Int. 2019;122:10–5. https://doi.org/10.1016/j.foodres.2019.03.064.

    Article  CAS  PubMed  Google Scholar 

  27. Araujo P, Zeng Y, Du Z-Y, Nguyen T-T, Frøyland L, Grung B. Discrimination of n-3 rich oils by gas chromatography. Lipids. 2010;45:1147–58. https://doi.org/10.1007/s11745-010-3483-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khoomrung S, Raber G, Laoteng K, Francesconi KA. Identification and characterization of fish oil supplements based on fatty acid analysis combined with a hierarchical clustering algorithm. Eur J Lipid Sci Technol. 2014;116:795–804. https://doi.org/10.1002/ejlt.201300369.

    Article  CAS  Google Scholar 

  29. Arena A, Zoccali M, Trozzi A, Tranchida PQ, Mondello L. Occurrence of mineral oil hydrocarbons in omega-3 fatty acid dietary supplements. Foods. 2021;10:2424. https://doi.org/10.3390/foods10102424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bahaghighat HD, Freye CE, Synovec RE. Recent advances in modulator technology for comprehensive two dimensional gas chromatography. TrAC Trends Anal Chem. 2019;113:379–91. https://doi.org/10.1016/j.trac.2018.04.016.

    Article  CAS  Google Scholar 

  31. Tranchida PQ. Comprehensive two-dimensional gas chromatography: a perspective on processes of modulation. J Chromatogr A. 2018;1536:2–5. https://doi.org/10.1016/j.chroma.2017.04.039.

    Article  CAS  PubMed  Google Scholar 

  32. Higgins Keppler EA, Jenkins CL, Davis TJ, Bean HD. Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. TrAC Trends Anal Chem. 2018;109:275–86. https://doi.org/10.1016/j.trac.2018.10.015.

    Article  CAS  Google Scholar 

  33. Kulsing C, Nolvachai Y, Marriott PJ. Concepts, selectivity options and experimental design approaches in multidimensional and comprehensive two-dimensional gas chromatography. TrAC Trends Anal Chem. 2020;130:115995. https://doi.org/10.1016/j.trac.2020.115995.

    Article  CAS  Google Scholar 

  34. Stilo F, Bicchi C, Reichenbach SE, Cordero C. Comprehensive two-dimensional gas chromatography as a boosting technology in food-omic investigations. J Sep Sci. 2021;44:1592–611. https://doi.org/10.1002/jssc.202100017.

    Article  CAS  PubMed  Google Scholar 

  35. Hoh E, Lehotay SJ, Mastovska K, Huwe JK. Evaluation of automated direct sample introduction with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for the screening analysis of dioxins in fish oil. J Chromatogr A. 2008;1201:69–77. https://doi.org/10.1016/j.chroma.2008.05.089.

    Article  CAS  PubMed  Google Scholar 

  36. Tranchida PQ, Franchina FA, Dugo P, Mondello L. Flow-modulation low-pressure comprehensive two-dimensional gas chromatography. J Chromatogr A. 2014;1372:236–44. https://doi.org/10.1016/j.chroma.2014.10.097.

    Article  CAS  Google Scholar 

  37. Hoh E, Lehotay SJ, Mastovska K, Ngo HL, Vetter W, Pangallo KC, Reddy CM. Capabilities of direct sample introduction−comprehensive two-dimensional gas chromatography−time-of-flight mass spectrometry to analyze organic chemicals of interest in fish oils. Environ Sci Technol. 2009;43:3240–7. https://doi.org/10.1021/es803486x.

    Article  CAS  PubMed  Google Scholar 

  38. Pomerantsev AL. Acceptance areas for multivariate classification derived by projection methods. J Chemom. 2008;22:601–9. https://doi.org/10.1002/cem.1147.

    Article  CAS  Google Scholar 

  39. Ferreira VHC, Hantao LW, Poppi RJ. Use of color based chromatographic images obtained from comprehensive two-dimensional gas chromatography in authentication analyses. Talanta. 2021;234:122616. https://doi.org/10.1016/j.talanta.2021.122616.

    Article  CAS  PubMed  Google Scholar 

  40. Toledo BR, Hantao LW, Ho TD, Augusto F, Anderson JL. A chemometric approach toward the detection and quantification of coffee adulteration by solid-phase microextraction using polymeric ionic liquid sorbent coatings. J Chromatogr A. 2014;1346:1–7. https://doi.org/10.1016/j.chroma.2014.04.035.

    Article  CAS  PubMed  Google Scholar 

  41. Rodionova OY, Titova AV, Pomerantsev AL. Discriminant analysis is an inappropriate method of authentication. TrAC Trends Anal Chem. 2016;78:17–22. https://doi.org/10.1016/j.trac.2016.01.010.

    Article  CAS  Google Scholar 

  42. Paiva AC, Simões Oliveira D, Hantao LW. A bottom-up approach for data mining in bioaromatization of beers using flow-modulated comprehensive two-dimensional gas chromatography/mass spectrometry. Separations. 2019;6:46. https://doi.org/10.3390/separations6040046.

    Article  CAS  Google Scholar 

  43. Sinha AE, Prazen BJ, Synovec RE. Trends in chemometric analysis of comprehensive two-dimensional separations. Anal Bioanal Chem. 2004;378:1948–51. https://doi.org/10.1007/s00216-004-2503-7.

    Article  CAS  PubMed  Google Scholar 

  44. Feizi N, Hashemi-Nasab FS, Golpelichi F, Saburouh N, Parastar H. Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies. TrAC Trends Anal Chem. 2021;138:116239. https://doi.org/10.1016/j.trac.2021.116239.

    Article  CAS  Google Scholar 

  45. Stefanuto P-H, Smolinska A, Focant J-F. Advanced chemometric and data handling tools for GC×GC-TOF-MS. TrAC Trends Anal Chem. 2021;139:116251. https://doi.org/10.1016/j.trac.2021.116251.

    Article  CAS  Google Scholar 

  46. Ballabio D, Grisoni F, Todeschini R. Multivariate comparison of classification performance measures. Chemom Intell Lab Syst. 2018;174:33–44. https://doi.org/10.1016/j.chemolab.2017.12.004.

    Article  CAS  Google Scholar 

  47. de Geus H-J, Aidos I, de Boer J, Luten JB, Brinkman UAT. Characterisation of fatty acids in biological oil samples using comprehensive multidimensional gas chromatography. J Chromatogr A. 2001;910:95–103. https://doi.org/10.1016/S0021-9673(00)01183-3.

    Article  PubMed  Google Scholar 

  48. Bogusz S, Hantao LW, Braga SCGN, de Matos França V de CR, da Costa MF, Hamer RD, Ventura DF, Augusto F. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography for fatty acid profiling of cell wall phospholipids. J Sep Sci. 2012;35:2438–2444. https://doi.org/10.1002/jssc.201200256

  49. Mogollon NGS, Ribeiro FA de L, Lopez MM, Hantao LW, Poppi RJ, Augusto F. Quantitative analysis of biodiesel in blends of biodiesel and conventional diesel by comprehensive two-dimensional gas chromatography and multivariate curve resolution. Anal Chim Acta. 2013;796:130–136. https://doi.org/10.1016/j.aca.2013.07.071

  50. Griffith JF, Winniford WL, Sun K, Edam R, Luong JC. A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A. 2012;1226:116–23. https://doi.org/10.1016/j.chroma.2011.11.036.

    Article  CAS  PubMed  Google Scholar 

  51. Crucello J, Pierone DV, Hantao LW. Simple and cost-effective determination of polychlorinated biphenyls in insulating oils using an ionic liquid-based stationary phase and flow modulated comprehensive two-dimensional gas chromatography with electron capture detection. J Chromatogr A. 2020;1610:460530. https://doi.org/10.1016/j.chroma.2019.460530.

    Article  CAS  PubMed  Google Scholar 

  52. Facanali R, Marques MOM, Hantao LW. Metabolic profiling of Varronia curassavica Jacq. terpenoids by flow modulated two-dimensional gas chromatography coupled to mass spectrometry. Separations. 2020;7:18. https://doi.org/10.3390/separations7010018.

  53. Moreira de Oliveira A, Alberto Teixeira C, Wang Hantao L. Evaluation of the retention profile in flow-modulated comprehensive two-dimensional gas chromatography and independent component analysis of weathered heavy oils. Microchem J. 2022;172:106978. https://doi.org/10.1016/j.microc.2021.106978.

    Article  CAS  Google Scholar 

  54. Paiva AC, Hantao LW. Exploring a public database to evaluate consumer preference and aroma profile of lager beers by comprehensive two-dimensional gas chromatography and partial least squares regression discriminant analysis. J Chromatogr A. 2020;1630:461529. https://doi.org/10.1016/j.chroma.2020.461529.

    Article  CAS  PubMed  Google Scholar 

  55. Crucello J, Miron LFO, Ferreira VHC, Nan H, Marques MOM, Ritschel PS, Zanus MC, Anderson JL, Poppi RJ, Hantao LW. Characterization of the aroma profile of novel Brazilian wines by solid-phase microextraction using polymeric ionic liquid sorbent coatings. Anal Bioanal Chem. 2018;410:4749–62. https://doi.org/10.1007/s00216-018-1134-3.

    Article  CAS  PubMed  Google Scholar 

  56. Replication data and code for: Bor et al “Police killings and their spillover effects on mental health among Black Americans in the US.” https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VGYI0E Accessed 28 Aug 2022.

  57. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. https://doi.org/10.1186/1471-2164-7-142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wold S. Pattern recognition by means of disjoint principal components models. Pattern Recognit. 1976;8:127–39. https://doi.org/10.1016/0031-3203(76)90014-5.

    Article  Google Scholar 

  59. Pomerantsev AL, Rodionova OY. Concept and role of extreme objects in PCA/SIMCA. J Chemom. 2014;28:429–38. https://doi.org/10.1002/cem.2506.

    Article  CAS  Google Scholar 

  60. Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemom. 2014;28:213–25. https://doi.org/10.1002/cem.2609.

    Article  CAS  Google Scholar 

  61. Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17:166–73. https://doi.org/10.1002/cem.785.

    Article  CAS  Google Scholar 

  62. Hantao LW, Aleme HG, Passador MM, Furtado EL, Ribeiro FA de L, Poppi RJ, Augusto F. Determination of disease biomarkers in Eucalyptus by comprehensive two-dimensional gas chromatography and multivariate data analysis. J Chromatogr A. 2013;1279:86–91. https://doi.org/10.1016/j.chroma.2013.01.013

  63. Bean HD, Hill JE, Dimandja J-MD. Improving the quality of biomarker candidates in untargeted metabolomics via peak table-based alignment of comprehensive two-dimensional gas chromatography–mass spectrometry data. J Chromatogr A. 2015;1394:111–7. https://doi.org/10.1016/j.chroma.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ogundare SA, van Zyl WE. A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose. 2019;26:6489–528. https://doi.org/10.1007/s10570-019-02580-0.

    Article  CAS  Google Scholar 

  65. Zontov YV, Rodionova OY, Kucheryavskiy SV, Pomerantsev AL. DD-SIMCA – A MATLAB GUI tool for data driven SIMCA approach. Chemom Intell Lab Syst. 2017;167:23–8. https://doi.org/10.1016/j.chemolab.2017.05.010.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed by ANP/PETROBRAS (Grant 2019/00209–3 and 2019/00210–1, Brazil), the National Council for Scientific and Technological Development (CNPq) (Grant 316202/2021–5), the São Paulo Research Foundation (FAPESP) (Grant 14/50867–3 and 20/01064–6), and the Coordination for the Improvement of Higher Education Personnel (CAPES) — Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Leandro Wang Hantao; methodology, Carlos Alberto Teixeira, Rássius Alexandre Medeiro Lima, Sofia Madruga Marcondes Ferraz, and Victor Gustavo Kelis Cardoso; formal analysis and investigation, Carlos Alberto Teixeira, Rássius Alexandre Medeiro Lima, Sofia Madruga Marcondes Ferraz, and Victor Gustavo Kelis Cardoso; writing — original draft preparation, Carlos Alberto Teixeira, Rássius Alexandre Medeiro Lima, Sofia Madruga Marcondes Ferraz, and Victor Gustavo Kelis Cardoso; writing — review and editing, Carlos Alberto Teixeira, Leandro Wang Hantao, Rássius Alexandre Medeiro Lima, Sofia Madruga Marcondes Ferraz, and Victor Gustavo Kelis Cardoso; funding acquisition, Leandro Wang Hantao; and supervision, Leandro Wang Hantao.

Corresponding author

Correspondence to Leandro Wang Hantao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, R.A.M., Ferraz, S.M.M., Cardoso, V.G.K. et al. Authentication of fish oil (omega-3) supplements using class-oriented chemometrics and comprehensive two-dimensional gas chromatography coupled to mass spectrometry. Anal Bioanal Chem 415, 2601–2611 (2023). https://doi.org/10.1007/s00216-022-04428-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04428-2

Keywords

Navigation