Skip to main content

Advertisement

Log in

A NIR fluorescence probe for monitoring Cys upregulation induced by balsam pear polysaccharide and imaging in zebrafish

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we introduced the acrylate recognition group into dicyanoisophorone derivative DCI-C–OH to construct the NIR fluorescent probe DCI-C-Cys with a large Stokes shift (240 nm). DCI-C-Cys could specifically respond to Cys, resulting in a 22-fold increase in fluorescence intensity at 702 nm. Meanwhile, the probe has the advantages of good water solubility, high sensitivity (93 nM), and excellent biocompatibility. Moreover, DCI-C-Cys successfully monitored endogenous and exogenous Cys in HepG2 cells and zebrafish. Most importantly, we found that balsam pear polysaccharide could lead to the increase of intracellular Cys levels, which might be conducive to the further study of the antioxidant mechanism of balsam pear polysaccharide.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001;73:5972–8.

    Article  CAS  PubMed  Google Scholar 

  2. Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C. Metal and redox modulation of cysteine protein function. Chem Biol. 2003;10:677–93.

    Article  CAS  PubMed  Google Scholar 

  3. Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12:746–54.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang R, Yong JX, Yuan JL, Xu ZP. Recent advances in the development of responsive probes for selective detection of cysteine. Coordin Chem Rev. 2020;408: 213182.

    Article  CAS  Google Scholar 

  5. Trachootham D, Lu WQ, Ogasawara MA, Valle NRD, Huang P. Redox regulation of cell survival. Antioxid Redox Sign. 2008;10:1343–74.

    Article  CAS  Google Scholar 

  6. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468:790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu JL, Wang ZQ, Mao GJ, Jiang WL, Tan M, Xu F, Li CY. A near-infrared fluorescent probe with large Stokes shift for imaging Cys in tumor mice. Anal Chim Acta. 2021;1171: 338655.

    Article  CAS  PubMed  Google Scholar 

  8. Yue YK, Huo FJ, Ning P, Zhang YB, Chao JB, Meng XM, Yin CX. Dual-site fluorescent probe for visualizing the metabolism of Cys in living cells. J Am Chem Soc. 2017;139:3181–5.

    Article  CAS  PubMed  Google Scholar 

  9. Seiwert B, Karst U. Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides. Anal Chem. 2007;79:7131–8.

    Article  CAS  PubMed  Google Scholar 

  10. Xue ZH, Fu XX, Rao HH, Ibrahim MH, Xiong LL, Liu XH, Lu XQ. A colorimetric indicator-displacement assay for cysteine sensing based on a molecule-exchange mechanism. Talanta. 2017;174:667–72.

    Article  CAS  PubMed  Google Scholar 

  11. Balamurugan TST, Huang CH, Chang PC, Huang ST. Electrochemical molecular switch for the selective profiling of cysteine in live cells and whole blood and for the quantification of aminoacylase-1. Anal Chem. 2018;90:12631–8.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang SW, Wu DD, Wu JJ, Xia QW, Jia XD, Song XL, Zeng LT, Yuan Y. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine. Talanta. 2019;204:747–52.

    Article  CAS  PubMed  Google Scholar 

  13. Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ. Design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev. 2015;44:6143–60.

    Article  CAS  PubMed  Google Scholar 

  14. Xie RH, Li YQ, Zhou ZL, Pang X, Wu CY, Yin P, Li HT. A near-infrared excitation/emission fluorescent probe for imaging of endogenous cysteine in living cells and zebrafish. Anal Bioanal Chem. 2020;412:5539–50.

    Article  CAS  PubMed  Google Scholar 

  15. Ren HX, Huo FJ, Zhang YB, Zhao SH, Yin CX. An NIR ESIPT-based fluorescent probe with large stokes shift for specific detection of Cys and its bioimaging in cells and mice. Sensor Actuat B: Chem. 2020;2020(319): 128248.

    Article  CAS  Google Scholar 

  16. Chen CY, Zhou LQ, Liu W, Liu WS. Coumarinocoumarin-based two-photon fluorescent cysteine biosensor for targeting lysosome. Anal Chem. 2018;90:6138–43.

    Article  CAS  PubMed  Google Scholar 

  17. Chen XQ, Zhou Y, Peng XJ, Yoon J. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39:2120–35.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Tang YH, Lin WY. Recent progress in the fluorescent probes for the specific imaging of small molecular weight thiols in living cells. TrAC Trend Anal Chem. 2016;76:166–81.

    Article  CAS  Google Scholar 

  19. Hu GD, Jia HY, Zhao LN, Cho DH, Fang JG. Small molecule fluorescent probes of protein vicinal dithiols. Chinese Chem Lett. 2019;30:1704–16.

    Article  CAS  Google Scholar 

  20. Yang Y, Zhang LW, Zhang X, Liu SD, Wang Y, Zhang L, Ma Z, You HY, Chen LX. A cysteine-selective fluorescent probe for monitoring stress response cysteine fluctuations. Chem Commun. 2021;57:5810–3.

    Article  CAS  Google Scholar 

  21. Sun JY, Hu ZA, Zhang SC, Zhang XR. A novel chemiluminescent probe based on 1,2-dioxetane scaffold for imaging cysteine in living mice. ACS Sensors. 2019;4:87–92.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LW, Kang J, Liu SD, Zhang X, Sun JY, Hu YS, Yang Y, Chen LX. A chemical covalent tactic for bio-thiol sensing and protein labeling agent design. Chem Commun. 2020;56:11485–8.

    Article  CAS  Google Scholar 

  23. Zhang X, Zhang LW, Wang XY, Han XY, Huang Y, Li BW, Chen LX. Visualizing and evaluating mitochondrial cysteine via near-infrared fluorescence imaging in cells, tissues and in vivo under hypoxia/reperfusion stress. J Hazard Mater. 2021;419: 126476.

    Article  CAS  PubMed  Google Scholar 

  24. Long Y, Liu JR, Tian DH, Dai F, Zhang SX, Zhou B. Cooperation of ESIPT and ICT processes in the designed 2-(2′-hydroxyphenyl)benzothiazole derivative: a near-infrared two-photonfluorescent probe with a large Stokes shift for the detection of cysteine and its application in biological environments. Anal Chem. 2020;92:14236–43.

    Article  CAS  PubMed  Google Scholar 

  25. Li SJ, Song D, Huang WJ, Li Z, Liu ZH. In situ imaging of cysteine in the brains of mice with epilepsy by a near-infrared emissive fluorescent probe. Anal Chem. 2020;92:2802–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao LH, He X, Huang YB, Li JL, Li YL, Tao S, Sun Y, Wang XH, Ma PY, Song DQ. A novel ESIPT-ICT-based near-infrared fluorescent probe with large stokes-shift for the highly sensitive, specific, and non-invasive in vivo detection of cysteine. Sensor Actuat B: Chem. 2019;296:126571.

    Article  CAS  Google Scholar 

  27. Yang XJ, Wang YY, Zhao MX, Yang W. A colorimetric and near-infrared fluorescent probe for cysteine and homocysteine detection. Spectrochim Acta A. 2019;212:10–4.

    Article  CAS  Google Scholar 

  28. Han XY, Yu FB, Song XY, Chen LX. Quantification of cysteine hydropersulfide with a ratiometric near-infrared fluorescent probe based on selenium–sulfur exchange reaction. Chem Sci. 2016;7:5098–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yin K, Yu FB, Zhang WW, Chen LX. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo. Biosens Bioelectron. 2015;74:156–64.

    Article  CAS  PubMed  Google Scholar 

  30. Wang BJ, Liu RJ, Fang J, Wang YW, Peng Y. A water-soluble dual-site fluorescent probe for the rapid detection of cysteine with high sensitivity and specificity. Chem Commun. 2019;55:11762–5.

    Article  CAS  Google Scholar 

  31. Liu T, Huo FJ, Li JF, Chao JB, Zhang YB, Yin CX. An off-on fluorescent probe for specifically detecting cysteine and its application in bioimaging. Sensor Actuat B: Chem. 2016;237:127–32.

    Article  CAS  Google Scholar 

  32. Murale DP, Kim H, Choi WS, Churchill DG. Rapid and selective detection of Cys in living neuronal cells utilizing a novel fluorescein with chloropropionate–ester functionalities. RSC Adv. 2014;4:5289–92.

    Article  CAS  Google Scholar 

  33. Kim Y, Choi M, Seo S, Manjare ST, Jon S, Churchill DG. A selective fluorescent probe for cysteine and its imaging in live cells. RSC Adv. 2014;4:64183–6.

    Article  CAS  Google Scholar 

  34. Tian MG, Guo FQ, Sun YM, Zhang WJ, Miao F, Liu Y, Song GF, Ho CL, Yu XQ, Sun JZ, Wong WY. A fluorescent probe for intracellular cysteine overcoming the interference by glutathione. Org Biomol Chem. 2014;12:6128–33.

    Article  CAS  PubMed  Google Scholar 

  35. Wang JL, Wang H, Hao YF, Yang SX, Tian HY, Sun BG, Liu YG. A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples. Food Chem. 2018;262:67–71.

    Article  CAS  PubMed  Google Scholar 

  36. Fan WL, Huang XM, Shi XM, Wang Z, Lu ZL, Fan CH, Bo QB. A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim Acta A. 2017;173:918–23.

    Article  CAS  Google Scholar 

  37. Fu YJ, Li Z, Li CY, Li YF, Wu P, Wen ZH. Borondipyrrolemethene-based fluorescent probe for distinguishing cysteine from biological thiols and its application in cell image. Dyes Pigments. 2017;139:381–7.

    Article  CAS  Google Scholar 

  38. Yu YW, Yang JJ, Xu XH, Jiang YL, Wang BX. A novel fluorescent probe for highly sensitive and selective detection of cysteine and its application in cell imaging. Sensor Actuat B: Chem. 2017;251:902–8.

    Article  CAS  Google Scholar 

  39. Ji Y, Dai F, Zhou B. Developing a julolidine-fluorescein-based hybrid as a highly sensitive fluorescent probe for sensing and bioimaging cysteine in living cells. Talanta. 2019;197:631–7.

    Article  CAS  PubMed  Google Scholar 

  40. Fu ZH, Han X, Shao YL, Fang JG, Zhang ZH, Wang YW, Peng Y. Fluorescein-based chromogenic and ratiometric fluorescence probe for highly selective detection of cysteine and its application in bioimaging. Anal Chem. 2017;89:1937–44.

    Article  CAS  PubMed  Google Scholar 

  41. Gong SY, Zhou EB, Hong JX, Feng GQ. Nitrobenzoxadiazole ether-based near-infrared fluorescent probe with unexpected high selectivity for H2S imaging in living cells and mice. Anal Chem. 2019;91:13136–42.

    Article  CAS  PubMed  Google Scholar 

  42. Cai ST, Liu C, Jiao XJ, Zhao LC, Zeng XS. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells. J Mater Chem B. 2020;8:2269–74.

    Article  CAS  PubMed  Google Scholar 

  43. Li SJ, Fu YJ, Li CY, Li YF, Yi LH, Ou-Yang J. A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples. Anal Chim Acta. 2017;994:73–81.

    Article  CAS  PubMed  Google Scholar 

  44. Deng BB, Ren MG, Kong XQ, Zhou K, Lin WY. Development of an enhanced turn-on fluorescent HOCl probe with a large Stokes shift and its use for imaging HOCl in cells and zebrafish. Sensor Actuat B: Chem. 2018;255:963–9.

    Article  CAS  Google Scholar 

  45. Chen DG, Long ZL, Sun YM, Luo ZJ, Lou XD. A red-emission probe for intracellular biothiols imaging with a large Stokes shift. J Photoch Photobio A. 2019;368:90–6.

    Article  CAS  Google Scholar 

  46. Chen F, Huang GL. Preparation and immunological activity of polysaccharides and their derivatives. Int J Biol Macromol. 2018;112:211–6.

    Article  CAS  PubMed  Google Scholar 

  47. Chen F, Huang GL, Huang HL. Preparation, analysis, antioxidant activities in vivo of phosphorylated polysaccharide from Momordica charantia. Carbohyd Polym. 2021;252: 117179.

    Article  CAS  Google Scholar 

  48. Mei XY, Yang WJ, Huang GL, Huang HL. The antioxidant activities of balsam pear polysaccharide. Int J Biol Macromol. 2020;142:232–6.

    Article  CAS  PubMed  Google Scholar 

  49. Huang HL, Chen F, Long R, Huang GL. The antioxidant activities in vivo of bitter gourd polysaccharide. Int J Biol Macromol. 2020;145:141–4.

    Article  CAS  PubMed  Google Scholar 

  50. Chen F, Huang GL. Extraction, derivatization and antioxidant activity of bitter gourd polysaccharide. Int J Biol Macromol. 2019;141:14–20.

    Article  CAS  PubMed  Google Scholar 

  51. Yan JK, Yu YB, Wang C, Wu CD, Wu LX. Y Yang, Zhang HN, Production, physicochemical characteristics, and in vitro biological activities of polysaccharides obtained from fresh bitter gourd (Momordica charantia L.) via room temperature extraction techniques. Food Chem. 2021;337:127798.

    Article  CAS  PubMed  Google Scholar 

  52. Ge CP, Wang HY, Ni TJ, Yang ZJ, Chang KW. Red-emitting fluorescent turn-on probe with specific isothiocyanate recognition site for cysteine imaging in living systems. Spectrochim Acta A. 2021;259: 119826.

    Article  CAS  Google Scholar 

  53. He LW, Yang XL, Xu KX, Lin WY. Improved aromatic substitution–rearrangement-based ratiometric fluorescent cysteine-specific probe and its application of real-time imaging under oxidative stress in living zebrafish. Anal Chem. 2017;89:9567–73.

    Article  CAS  PubMed  Google Scholar 

  54. Wang XD, Fan L, Ge JY, Li F, Zhang CH, Wang JJ, Shuang SM, Dong C. A lysosome-targetable fluorescent probe for real-time imaging cysteine under oxidative stress in living cells. Spectrochim Acta A. 2019;221:117175.

    Article  CAS  Google Scholar 

  55. Zeng RF, Lan JS, Li XD, Liang HF, Liao Y, Lu YJ, Zhang T, Ding Y. A fluorescent coumarin-based probe for the fast detection of cysteine with live cell application. Molecules. 2017;22:1618.

    Article  PubMed Central  CAS  Google Scholar 

  56. Zhang HY, Yin XY, Hong JX, Deng YZ, Feng GQ. A NIR fluorescence probe having significant fluorescence turn-on signal at 700 nm and large Stokes shift for rapid detection of HOCl in vivo. Talanta. 2021;223: 121768.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang HY, Feng WY, Feng GQ. A simple and readily available fluorescent turn-on probe for cysteine detection and bioimaging in living cells. Dyes Pigments. 2017;139:73–8.

    Article  CAS  Google Scholar 

  58. Chen DG, Long Z, Dang YC, Chen L. A new fluorescent probe for specific detection of cysteine with facile preparation and living cell imaging. Dyes Pigments. 2019;166:266–71.

    Article  CAS  Google Scholar 

  59. Zhang XY, He N, Huang Y, Yu FB, Li BW, Lv CJ, Chen LX. Mitochondria-targeting near-infrared ratiometric fluorescent probe for selective imaging of cysteine in orthotopic lung cancer mice. Sensor Actuat B: Chem. 2019;282:69–77.

    Article  CAS  Google Scholar 

  60. Wang QQ, Wang H, Huang JJ, Li N, Gu YQ, Wang P. Novel NIR fluorescent probe with dual models for sensitively and selectively monitoring and imaging Cys in living cells and mice. Sensor Actuat B: Chem. 2017;253:400–6.

    Article  CAS  Google Scholar 

  61. Hou XF, Li ZS, Li YQ, Zhou QH, Liu CH, Fan DF, Wang JJ, Xu RJ, Xu ZH. ICT-modulated NIR water-soluble fluorescent probe with large Stokes shift for selective detection of cysteine in living cells and zebrafish. Spectrochim Acta A. 2021;246:119030.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Henan Province (No. 212300410222, 202300410327); Science & Technology Project for Young Talents of Henan Province (No. 2022HYTP042); Excellent Youth Science Foundation of Henan Province (No. 202300410310); the Key Scientific Research Foundation of the Higher Education Institutions of Henan Province (No. 21A310009); the Key Project of Science and Technology of Henan Province (No. 192102310122); and the Development Program for Key Young Teachers in Colleges and Universities of Henan Province (No. 2020GGJS-146).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunpo Ge, Tianjun Ni or Kaiwen Chang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 650 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Q., Shang, C., Wang, H. et al. A NIR fluorescence probe for monitoring Cys upregulation induced by balsam pear polysaccharide and imaging in zebrafish. Anal Bioanal Chem 414, 6871–6880 (2022). https://doi.org/10.1007/s00216-022-04252-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04252-8

Keywords

Navigation