Skip to main content
Log in

A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in China. Glypican-3 (GPC3) is a specific antigen related to HCC, which is widely used in clinical detection as a reliable marker of HCC. In this paper, a highly sensitive homogeneous apatasensor was designed for GPC3 detection based on fluorescence resonance energy transfer (FRET) where the GPC3 aptamer labelled gold carbon dots (AuCDs-GPC3Apt) are used as a donor and magnetic graphene oxide (Fe3O4/GO) nanosheets are used as an acceptor. A one-step hydrothermal method was used to synthesize AuCDs to provide sufficient fluorescence. The FRET phenomenon exists between AuCDs-GPC3Apt and Fe3O4/GO, which weakens the fluorescence intensity of the whole system. When the target GPC3 is added to the FRET system, the fluorescent AuCDs-GPC3Apt binds to the GPC3 and forms a folded structure, which leads to AuCDs-GPC3Apt separation from Fe3O4/GO nanosheets. The Fe3O4/GO is then magnetically separated so that the fluorescence of free labelled AuCDs-GPC3Apt is restored. Under the optimum conditions, the fluorescence recovery rate is linearly correlated with the concentration of GPC3 (5–100 ng·mL−1) and the detection limit is 3.01 ng·mL−1 (S/N = 3). This strategy shows recoveries from 98.76 to 101.29% in real human serum samples and provides an immediate and effective detection method for the quantification of GPC3 with great potential applications for early diagnosis of HCC.

Graphical abstract

A sensitive homogeneous FRET-based apatasensor was designed for GPC3 detection where the AuCDs-GPC3Apt is a donor and Fe3O4/GO nanosheets are an acceptor. The GPC3 fluorescent aptasensor combines wider output range with low cost, high specificity, and good anti-interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang JJ, Lok V, Ngai CH, Chu C, Patel HK, Chandraseka VT, et al. Disease burden, risk factors, and recent trends of liver cancer: a global country-level analysis. Liver Cancer. 2021;10(4):330–45. https://doi.org/10.1159/000515304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang C, Yang L, Liang ZK, Liu YD, Liu SK. Long-term survival and prognostic factors of pulmonary metastasectomy in liver cancer: a systematic review and meta-analysis. World J Surg. 2018;42(7):2153–63. https://doi.org/10.1007/s00268-017-4431-7.

    Article  PubMed  Google Scholar 

  3. Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, et al. Liquid biopsy in hepatocellular carcinoma: where are we now? Cancers (Basel). 2021;13(9):2274. https://doi.org/10.3390/cancers13092274.

  4. Galle PR, Foerster F, Kudo M, Chan SL, Llovet JM, Qin SK, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019;39(12):2214–29. https://doi.org/10.1111/liv.14223.

    Article  PubMed  Google Scholar 

  5. Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: new trends. J Hepatol. 2020;72(2):250–61. https://doi.org/10.1016/j.jhep.2019.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li N, Spetz MR, Ho MT. The role of glypicans in cancer progression and therapy. J Histochem Cytochem. 2020;68(12):841–62. https://doi.org/10.1369/0022155420933709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen CL, Huang XM, Ying ZJ, Wu DM, Yu YN, Wang XD, et al. Can glypican-3 be a disease-specific biomarker? Clin Transl Med. 2017;6:18. https://doi.org/10.1186/s40169-017-0146-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou FB, Shang WT, Yu XL, Tian J. Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev. 2018;38(2):741–67. https://doi.org/10.1002/med.21455.

    Article  CAS  PubMed  Google Scholar 

  9. Gao W, Tang ZW, Zhang YF, Feng MQ, Qian M, Dimitrov DS, et al. Immunotoxin targeting glypican-3 regresses liver cancer via dual inhibition of Wnt signalling and protein synthesis. Nat Commun. 2015;6:6536. https://doi.org/10.1038/ncomms7536.

    Article  CAS  PubMed  Google Scholar 

  10. Ma X, Wang X, Chen M, Li F. Study on a new high affinity anti-glypicans-3 antibody in diagnosis of early hepatocellular carcinoma by differential pulse voltammetry. J Solid State Electrochem. 2017;21(6):1631–7. https://doi.org/10.1007/s10008-017-3535-1.

    Article  CAS  Google Scholar 

  11. Yu S, Li ZF, Li JZ, Zhao SM, Wu SG, Liu HJ, et al. Generation of dual functional nanobody-nanoluciferase fusion and its potential in bioluminescence enzyme immunoassay for trace glypican-3 in serum. Sens Actuators B. 2021;336:129717. https://doi.org/10.1016/j.snb.2021.129717.

    Article  CAS  Google Scholar 

  12. Xie CM, Tiede C, Zhang XY, Wang CR, Li ZX, Xu X, et al. Development of an affimerantibody combined immunological diagnosis kit for glypican-3. Sci Rep. 2017;7:9608. https://doi.org/10.1038/s41598-017-10083-w.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kordasht HK, Hasanzadeh M. Aptamer based recognition of cancer cells: recent progress and challenges in bioanalysis. Talanta. 2020;220:121436. https://doi.org/10.1016/j.talanta.2020.121436.

    Article  CAS  PubMed  Google Scholar 

  14. Bayramoglu G, Ozalp VC, Dincbal U, Arica MY. Fast and sensitive detection of salmonella in milk samples using aptamer-functionalized magnetic silica solid phase and MCM-41-aptamer gate system. ACS Biomater Sci Eng. 2018;4(4):1437–44. https://doi.org/10.1021/acsbiomaterials.8b00018.

    Article  CAS  PubMed  Google Scholar 

  15. Lu X, Wen X, Fan Z. A sensitive biosensor based on a ferrocene-marked adapter for the fluorescence detection of platelet-derived growth factor BB. J Lumin. 2020;221:117042. https://doi.org/10.1016/j.jlumin.2020.117042.

    Article  CAS  Google Scholar 

  16. Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941. https://doi.org/10.3390/molecules24050941.

    Article  CAS  PubMed Central  Google Scholar 

  17. Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem. 2018;410(5):1453–62. https://doi.org/10.1007/s00216-017-0786-8.

    Article  CAS  PubMed  Google Scholar 

  18. Wu LL, Sedgwick AC, Sun XL, Bull SD, He XP, James TD. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc Chem Res. 2019;52(9):2582–97. https://doi.org/10.1021/acs.accounts.9b00302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guan QH, Li N, Shi LL, Yu CY, Gao XH, Yang JP, et al. Aggregation-induced emission fluorophore-based molecular beacon for differentiating tumor and normal cells by detecting the specific and false-positive signals. ACS Biomater Sci Eng. 2019;5(7):3618–30. https://doi.org/10.1021/acsbiomaterials.9b00627.

    Article  CAS  PubMed  Google Scholar 

  20. Li D, Yuan X, Li CN, Luo YH, Jiang ZL. A novel fluorescence aptamer biosensor for trace Pb(II) based on gold-doped carbon dots and DNAzyme synergetic catalytic amplification. J Lumin. 2020;221:117056. https://doi.org/10.1016/j.jlumin.2020.117056.

  21. Cao DX, Liu ZQ, Verwilst P, Koo S, Jangjili P, Kim JS, et al. Coumarin-based small-molecule fluorescent chemosensors. Chem Rev. 2019;119(18):10403–519. https://doi.org/10.1021/acs.chemrev.9b00145.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng D, Pan Y, Wang L, Zeng ZB, Yuan L, Zhang XB, et al. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J Am Chem Soc. 2017;139(1):285–92. https://doi.org/10.1021/jacs.6b10508.

    Article  CAS  PubMed  Google Scholar 

  23. Gong PW, Sun L, Wang F, Liu XC, Yan ZQ, Wang MZ, et al. Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Eng J. 2019;356:994–1002. https://doi.org/10.1016/j.cej.2018.09.100.

    Article  CAS  Google Scholar 

  24. He L, Lu DQ, Liang H, Xie ST, Luo C, Hu MM, et al. Fluorescence resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano. 2017;11(4):4060–6. https://doi.org/10.1021/acsnano.7b00725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amiri M, Nekoueian K, Saberi RS. Graphene-family materials in electrochemical aptasensors. Anal Bioanal Chem. 2021;413(3):673–99. https://doi.org/10.1007/s00216-020-02915-y.

    Article  CAS  PubMed  Google Scholar 

  26. Nanda SS, Papaefthymiou GC, Yi DK. Functionalization of graphene oxide and its biomedical applications. Rev Solid State Mater Sci. 2015;40(5):291–315. https://doi.org/10.1080/10408436.2014.1002604.

    Article  CAS  Google Scholar 

  27. Zhou Y, Jing X, Chen Y. Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. J Mater Chem B. 2017;5(32):6451–70. https://doi.org/10.1039/c7tb00680b.

    Article  CAS  PubMed  Google Scholar 

  28. Mao JN, Hong B, Chen HD, Gao MH, Xu JC, Han YB, et al. Highly improved ethanol gas response of n-type alpha-Fe2O3 bunched nanowires sensor with high-valence donor-doping. J Alloys Compd. 2020;827:154248. https://doi.org/10.1016/j.jallcom.2020.154248.

    Article  CAS  Google Scholar 

  29. Ge W, Zhang XH, Ge XT, Liu K. Synthesis of alpha-Fe2O3/SiO2 nanocomposites for the enhancement of acetone sensing performance. Mater Res Bull. 2021;141:111379. https://doi.org/10.1016/j.materresbull.2021.111379.

    Article  CAS  Google Scholar 

  30. Hu LY, Niu CG, Wang XY, Huang DW, Zhang L, Zeng GM. Magnetic separate “turn-on” fluorescent biosensor for bisphenol a based on magnetic oxidation graphene. Talanta. 2017;168:196–202. https://doi.org/10.1016/j.talanta.2017.03.055.

    Article  CAS  PubMed  Google Scholar 

  31. Ma L, Guo T, Pan SL, Zhang YH. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Microchim Acta. 2018;185(10):487. https://doi.org/10.1007/s00604-018-3023-z.

    Article  CAS  Google Scholar 

  32. Li MK, Hu LY, Niu CG, Huang DW, Zeng GM. A fluorescent DNA based probe for Hg(II) based on thymine-Hg(II)-thymine interaction and enrichment via magnetized graphene oxide. Microchim Acta. 2018;185(3):207. https://doi.org/10.1007/s00604-018-2689-6.

    Article  CAS  Google Scholar 

  33. Tran CV, La DD, Hoai PNT, Ninh H, Hong PNT, Vu TH, et al. New TiO2-doped Cu-Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater. J Hazard Mater. 2021;420:126636. https://doi.org/10.1016/j.jhazmat.2021.126636.

  34. Meijer MS, Rojas-Gutierrez PA, Busko D, Howard IA, Frenze F, Wurth C, et al. Absolute upconversion quantum yields of blue-emitting LiYF4: Yb3+, Tm3+upconverting nanoparticles. Phys Chem Chem Phys. 2018;20(35):22556–62. https://doi.org/10.1039/c8cp03935f.

    Article  CAS  PubMed  Google Scholar 

  35. Cao CY, Wei P, Li RH, Zhong YP, Li X, Xue FF, et al. Ribosomal RNA-selective light-up fluorescent probe for rapidly imaging the nucleolus in live cells. Acs Sensors. 2019;4(5):1409–16. https://doi.org/10.1021/acssensors.9b00464.

    Article  CAS  PubMed  Google Scholar 

  36. Gudimella KK, Appidi T, Wu HF, Battula V, Jogdand A, Rengan AK, et al. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf B. 2021;197:111362. https://doi.org/10.1016/j.colsurfb.2020.111362.

    Article  CAS  Google Scholar 

  37. Bouche M, Hsu JC, Dong YC, Kim J, Taing K, Cormode DP. Recent advances in molecular imaging with gold nanoparticles. Bioconjug Chem. 2020;31(2):303–14. https://doi.org/10.1021/acs.bioconjchem.9b00669.

    Article  CAS  PubMed  Google Scholar 

  38. Mirau PA, Smith JE, Chavez JL, Hagen JA, Kelley-Loughnane N, Naik R. Structured DNA aptamer interactions with gold nanoparticles. Langmuir. 2018;34(5):2139–46. https://doi.org/10.1021/acs.langmuir.7b02449.

    Article  CAS  PubMed  Google Scholar 

  39. Nozaki T, Kakuda T, Pottathara YB, Kawasaki H. A nanocomposite of N-doped carbon dots with gold nanoparticles for visible light active photosensitisers. Photochem Photobiol Sci. 2019;18(5):1235–41. https://doi.org/10.1039/c9pp00035f.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao ML, Dong LL, Liu Z, Yang SH, Wu WZ, Lin J. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. Quant Imaging Med Surg. 2018;8(2):151–60. https://doi.org/10.21037/qims.2018.01.09.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li SJ, Wang YN, Mu XQ, Sheng W, Wang JP, Wang S. Two fluorescence quenching immunochromatographic assays based on carbon dots and quantum dots as donor probes for the determination of enrofloxacin. Anal Methods. 2019;11(18):2378–84. https://doi.org/10.1039/c9ay00154a.

    Article  CAS  Google Scholar 

  42. Figueiredo NM, Carvalho NJM, Cavaleiro A. An XPS study of Au alloyed Al-O sputtered coatings. Appl Surf Sci. 2011;257(13):5793–8. https://doi.org/10.1016/j.apsusc.2011.01.104.

    Article  CAS  Google Scholar 

  43. Cheng X, Cen Y, Xu GH, Wei FD, Shi ML, Xu XM, et al. Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide. Microchim Acta. 2018;185(2):144. https://doi.org/10.1007/s00604-018-2683-z.

  44. Nair RV, Chandran PR, Mohamed AP, Pillai S. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate. Anal Chim Acta. 2021;1181:338893. https://doi.org/10.1016/j.aca.2021.338893.

  45. Heidari F, Mohajeri N, Zarghami N. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem Biophys. 2022;80(1):75–88. https://doi.org/10.1007/s12013-021-01034-4.

    Article  CAS  PubMed  Google Scholar 

  46. Sadighian S, Bayat N, Najaflou S, Kermanian M, Hamidi M. Preparation of graphene oxide/Fe3O4 nanocomposite as a potential magnetic nanocarrier and MRI contrast agent. ChemistrySelect. 2021;6(12):2862–8. https://doi.org/10.1002/slct.202100195.

    Article  CAS  Google Scholar 

  47. Tufa LT, Oh S, Tran VT, Kim J, Jeong KJ, Park TJ, et al. Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis. Electrochim Acta. 2018;290:369–77. https://doi.org/10.1016/j.electacta.2018.09.108.

    Article  CAS  Google Scholar 

  48. Chen JJ, Xie CM, Wang CR, Wan Y, Dong ZN, Li M, et al. Development of a time-resolved fluorescence immunoassay for the diagnosis of hepatocellular carcinoma based on the detection of glypican-3. J Fluoresc. 2017;27(4):1479–85. https://doi.org/10.1007/s10895-017-2087-1.

    Article  CAS  PubMed  Google Scholar 

  49. Tahon AM, El-Ghanam MZ, Zaky S, Emran TM, Bersy AM, El-Raey F, et al. Significance of glypican-3 in early detection of hepatocellular carcinoma in cirrhotic patients. J Gastrointest Cancer. 2019;50(3):434–41. https://doi.org/10.1007/s12029-018-0095-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (Nos. 62161009 and 82073607), the Open Fund of Guangxi Key Laboratory of Bio-targeting Theranostics (Nos. GXSWBX201902 and GXSWBX201903), and the Open Fund of Guangxi Key Laboratory of Information Materials (No. 211022-K).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Ding, Jintao Liang or Zhide Zhou.

Ethics declarations

Ethics approval

The human serum samples used in this study were approved by the Guangxi Key Laboratory of Metabolic Diseases Research Ethics Committee in Guilin, China.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Chen, W., Mi, D. et al. A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor. Anal Bioanal Chem 414, 6441–6453 (2022). https://doi.org/10.1007/s00216-022-04201-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04201-5

Keywords

Navigation