Skip to main content
Log in

Electrical potential-assisted DNA-RNA hybridization for rapid microRNA extraction

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analysis of microRNAs (miRNAs) is important in cancer diagnostics and therapy. Conventional methods used to extract miRNA for analysis are generally time-consuming. A novel approach for rapid and sensitive extraction of miRNAs is urgently need for clinical applications. Herein, a novel strategy based on electrical potential-assisted DNA-RNA hybridization was designed for miRNA extraction. The entire extraction process was accomplished in approximately 3 min, which is much shorter than the commercial adsorption column method, at more than 60 min, or the TRIzol method, at more than 90 min. Additionally, the method offered the advantages of simplicity and specificity during the extraction process by electrical potential-assisted hybridization of single-stranded DNA and RNA. Taking let-7a as an example, satisfactory results were achieved for miRNA extraction in serum, demonstrating the applicability in miRNA nucleic acid amplification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript and its supplementary information files.

Abbreviations

miRNAs:

microRNAs

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

ASEA:

Accelerated strand exchange amplification

TCEP:

Tris(2-carboxyethyl)phosphine hydrochloride

MCH:

6-mercaptohexanol

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

References

  1. Ban E, Chae D-K, Yoo YS, Song EJ. An improvement of miRNA extraction efficiency in human plasma. Anal Bioanal Chem. 2017;409(27):6397–404. https://doi.org/10.1007/s00216-017-0580-7.

    Article  CAS  PubMed  Google Scholar 

  2. Gu J, Qiao Z, He X, Yu Y, Lei Y, Tang J, Shi H, He D, Wang K. Enzyme-free amplified detection of miRNA based on target-catalyzed hairpin assembly and DNA-stabilized fluorescent silver nanoclusters. Analyst. 2020;145(15):5194–9. https://doi.org/10.1039/D0AN00545B.

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Tian T, Ji D, Ren N, Ge S, Yan M, Yu J. A graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells. Biosens Bioelectron. 2016;85:909–14. https://doi.org/10.1016/j.bios.2016.06.015.

    Article  CAS  PubMed  Google Scholar 

  4. Lavaee P, Taghdisi SM, Abnous K, Danesh NM, Khayyat LH, Jalalian SH. Fluorescent sensor for detection of miR-141 based on target-induced fluorescence enhancement and PicoGreen. Talanta. 2019;202:349–53. https://doi.org/10.1016/j.talanta.2019.04.084.

    Article  CAS  PubMed  Google Scholar 

  5. Li D, Luo Z, An H, Yang E, Wu M, Huang Z, Duan Y. Poly-adenine regulated DNA density on AuNPs to construct efficient DNA walker for microRNA-21 detection. Talanta. 2020;217:121056. https://doi.org/10.1016/j.talanta.2020.121056.

    Article  CAS  PubMed  Google Scholar 

  6. Kim H, Kang S, Park KS, Park HG. Enzyme-free and label-free miRNA detection based on target-triggered catalytic hairpin assembly and fluorescence enhancement of DNA-silver nanoclusters. Sens Actuators B: Chem. 2018;260:140–5. https://doi.org/10.1016/j.snb.2017.12.137.

    Article  CAS  Google Scholar 

  7. Cury JA, Koo H. Extraction and purification of total RNA from Sreptococcus mutans biofilms. Anal Biochem. 2007;365(2):208–14. https://doi.org/10.1016/j.ab.2007.03.021.

    Article  CAS  PubMed  Google Scholar 

  8. Burgess KA, Workman VL, Elsawy MA, Miller AF, Oceandy D, Saiani A. RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells. PLoS One. 2018;13(6):e0197517. https://doi.org/10.1371/journal.pone.0197517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao F, Lee EY, Shin Y. Improved reversible cross-linking-based solid-phase RNA extraction for pathogen diagnostics. Anal Chem. 2018;90(3):1725–33. https://doi.org/10.1021/acs.analchem.7b03493.

    Article  CAS  PubMed  Google Scholar 

  10. Yang H, Liu J, Huang S, Guo T, Deng L, Hua W. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene. 2014;538(1):113–22. https://doi.org/10.1016/j.gene.2013.12.057.

    Article  CAS  PubMed  Google Scholar 

  11. Duy J, Koehler JW, Honko AN, Minogue TD. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics. 2015;16(1):95. https://doi.org/10.1186/s12864-015-1299-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu C, Varona M, Anderson JL. Magnetic ionic liquids as solvents for RNA extraction and preservation. ACS Omega. 2020;5(19):11151–9. https://doi.org/10.1021/acsomega.0c01098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drula R, Ott LF, Berindan-Neagoe I, Pantel K, Calin GA. MicroRNAs from liquid biopsy derived extracellular vesicles: recent advances in detection and characterization methods. Cancers. 2020;12(8). https://doi.org/10.3390/cancers12082009.

  14. LdS FA, Amorim RG, Scopel WL, Scheicher RH. Controlled current confinement in interfaced 2D nanosensor for electrical identification of DNA. Phys Chem Chem Phys. 2019;21(45):24884–90. https://doi.org/10.1039/c9cp03950c.

    Article  CAS  Google Scholar 

  15. Jambrec D, Gebala M, La Mantia F, Schuhmann W. Potential-assisted DNA immobilization as a prerequisite for fast and controlled formation of DNA monolayers. Angew Chem Int Ed Engl. 2015;54(50):15064–8. https://doi.org/10.1002/anie.201506672.

    Article  CAS  PubMed  Google Scholar 

  16. Miranda-Castro R, Palchetti I, de-Los-Santos-Alvarez N (2020) The translational potential of electrochemical DNA-based liquid biopsy. Front Chem 8:143. https://doi.org/10.3389/fchem.2020.00143.

  17. Sanchez-Salcedo R, Miranda-Castro R, de-Los-Santos-Alvarez N, Lobo-Castanon MJ (2021) Dual electrochemical genosensor for early diagnosis of prostate cancer through lncRNAs detection. Biosens Bioelectron 192:113520. https://doi.org/10.1016/j.bios.2021.113520.

  18. Tymoczko J, Schuhmann W, Gebala M. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization. ACS Appl Mater Interfaces. 2014;6(24):21851–8. https://doi.org/10.1021/am5027902.

    Article  CAS  PubMed  Google Scholar 

  19. Cai W, Peck JR, van der Weide DW, Hamers RJ. Direct electrical detection of hybridization at DNA-modified silicon surfaces. Biosens Bioelectron. 2004;19(9):1013–9. https://doi.org/10.1016/j.bios.2003.09.009.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Ma C, Liu X-P, Wei Y-P, Mao C-J, Zhu J-J. A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosens Bioelectron. 2017;92:273–9. https://doi.org/10.1016/j.bios.2017.02.027.

    Article  CAS  PubMed  Google Scholar 

  21. Miao P, Wang B, Meng F, Yin J, Tang Y. Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode. Bioconjug Chem. 2015;26(3):602–7. https://doi.org/10.1021/acs.bioconjchem.5b00064.

    Article  CAS  PubMed  Google Scholar 

  22. Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, Tilley RD, Hibbert DB, Kavallaris M, Gooding JJ. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol. 2018;13(11):1066–71. https://doi.org/10.1038/s41565-018-0232-x.

    Article  CAS  PubMed  Google Scholar 

  23. Rafiee-Pour HA, Behpour M, Keshavarz M. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron. 2016;77:202–7. https://doi.org/10.1016/j.bios.2015.09.025.

    Article  CAS  PubMed  Google Scholar 

  24. Dong J, Chen G, Wang W, Huang X, Peng H, Pu Q, Du F, Cui X, Deng Y, Tang Z. Colorimetric PCR-based microRNA detection method based on small organic dye and single enzyme. Anal Chem. 2018;90(12):7107–11. https://doi.org/10.1021/acs.analchem.8b01111.

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Zhang S, Ouyang C, Wang Z, Wu D, Liu Y, Jiang Y, Wu ZS. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs. Talanta. 2019;192:175–81. https://doi.org/10.1016/j.talanta.2018.07.090.

    Article  CAS  PubMed  Google Scholar 

  26. Jimenez LA, Gionet-Gonzales MA, Sedano S, Carballo JG, Mendez Y, Zhong W. Extraction of microRNAs from biological matrices with titanium dioxide nanofibers. Anal Bioanal Chem. 2018;410(3):1053–60. https://doi.org/10.1007/s00216-017-0649-3.

    Article  CAS  PubMed  Google Scholar 

  27. Sosnowski RG, Tu E, Butler WF, O'Connell JP, Heller MJ. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci U S A. 1997;94(4):1119–23. https://doi.org/10.1073/pnas.94.4.1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edman CF, Raymond DE, Wu DJ, Tu E, Sosnowski RG, Butler WF, Nerenberg M, Heller MJ. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 1997;25(24):4907–14. https://doi.org/10.1093/nar/25.24.4907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fixe F, Branz HM, Louro N, Chu V, Prazeres DM, Conde JP. Electric-field assisted immobilization and hybridization of DNA oligomers on thin-film microchips. Nanotechnology. 2005;16(10):2061–71. https://doi.org/10.1088/0957-4484/16/10/014.

    Article  CAS  PubMed  Google Scholar 

  30. Yao M, Lv X, Deng Y, Rasheed M. Specific and simultaneous detection of micro RNA 21 and let-7a by rolling circle amplification combined with lateral flow strip. Anal Chim Acta. 2019;1055:115–25. https://doi.org/10.1016/j.aca.2018.12.040.

    Article  CAS  PubMed  Google Scholar 

  31. Wang ZH, Xu CJ. Research Progress of MicroRNA in early detection of ovarian Cancer. Chin Med J. 2015;128(24):3363–70. https://doi.org/10.4103/0366-6999.171459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson-Buck A, Su X, Giraldez MD, Zhao M, Tewari M, Walter NG. Kinetic fingerprinting to identify and count single nucleic acids. Nat Biotechnol. 2015;33(7):730–2. https://doi.org/10.1038/nbt.3246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daneshpour M, Karimi B, Omidfar K. Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens Bioelectron. 2018;109:197–205. https://doi.org/10.1016/j.bios.2018.03.022.

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179. https://doi.org/10.1093/nar/gni178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Zhang L, Wang Y, Yao J, Wang T, Weng Z, Yang L, Xie G. Ultrasensitive electrochemical biosensor for attomolar level detection of let 7a based on toehold mediated strand displacement reaction circuits and molecular beacon mediated circular strand displacement polymerization. Anal Chim Acta. 2021;1147:108–15. https://doi.org/10.1016/j.aca.2020.12.057.

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Liu M, Ma C, Shi C. Rapid DNA detection and one-step RNA detection catalyzed by Bst DNA polymerase and narrow-thermal-cycling. Analyst. 2020;145(15):5118–22. https://doi.org/10.1039/D0AN00975J.

    Article  CAS  PubMed  Google Scholar 

  37. Faria HAM, Zucolotto V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens Bioelectron. 2019;131:149–55. https://doi.org/10.1016/j.bios.2019.02.018.

    Article  CAS  PubMed  Google Scholar 

  38. Rant U, Arinaga K, Tornow M, Kim YW, Netz RR, Fujita S, Yokoyama N, Abstreiter G. Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface. Biophys J. 2006;90(10):3666–71. https://doi.org/10.1529/biophysj.105.078857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deraney RN, Schneider L, Tripathi A. Synergistic use of electroosmotic flow and magnetic forces for nucleic acid extraction. Analyst. 2020;145(6):2412–9. https://doi.org/10.1039/c9an02191d.

    Article  CAS  PubMed  Google Scholar 

  40. Guo Y, Bosompem A, Zhong X, Clark T, Shyr Y, Kim AS. A comparison of microRNA sequencing reproducibility and noise reduction using mirVana and TRIzol isolation methods. Int J Comput Biol Drug Design. 2014;7(2-3):102–12. https://doi.org/10.1504/ijcbdd.2014.061642.

    Article  CAS  Google Scholar 

  41. Kim Y-K, Yeo J, Kim B, Ha M, Kim VN. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell. 2012;46(6):893–5. https://doi.org/10.1016/j.molcel.2012.05.036.

    Article  CAS  PubMed  Google Scholar 

  42. Juan D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C, Ganesan S, Bhanot G, Liou LS. Identification of a microRNA panel for clear-cell kidney cancer. Urology. 2010;75(4):835–41. https://doi.org/10.1016/j.urology.2009.10.033.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the National Key Research and Development Programs of China (2018YFE0113300), National Natural Science Foundation of China (81801264) and Key Project of Shandong Provincial Natural Science Foundation (ZR2020KH030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiping Ma.

Ethics declarations

The studies were approved by the appropriate ethics committee and were performed in accordance with ethical standards.

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, Y., Sun, R. et al. Electrical potential-assisted DNA-RNA hybridization for rapid microRNA extraction. Anal Bioanal Chem 414, 3529–3539 (2022). https://doi.org/10.1007/s00216-022-03979-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03979-8

Keywords

Navigation