Skip to main content
Log in

Statistical analysis of isocratic chromatographic data using Bayesian modeling

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chromatographic retention times are usually modeled considering only one analyte at a time. However, it has certain limitations as no information is shared between the analytes, and consequently the model predictions poorly generalize to out-of-sample analytes. In this work, a publicly available dataset was used to illustrate the benefits of pooling the individual data and analyzing them simultaneously utilizing Bayesian hierarchical approach. Statistical analysis was carried out using the Stan program coupled with R, which enables full Bayesian inference with Markov chain Monte Carlo sampling. This methodology allows (i) incorporating prior knowledge about the likely values of model parameters, (ii) considering the between-analyte variability and the correlation between the model parameters, (iii) explaining the between-analyte variability by available predictors, and (iv) sharing information across the analytes. The latter is especially valuable when only limited information is available in the data about certain model parameters. The results are obtained in the form of posterior probability distribution, which quantifies uncertainty about the model parameters and predictions. Posterior probability is also directly relevant for decision-making. In this work, we used the Neue model to describe the relationship between retention factor and acetonitrile content in the mobile phase for 1026 analytes. The model was parametrized in terms of retention factor in 100% water, retention factor in 100% acetonitrile, and curvature coefficient, and considered log P and pKa as predictors. From this analysis, we discovered that the analytes formed two clusters with different retention depending on the degree of analyte dissociation. The final model turned out to be well calibrated with the data. It gives insight into the behavior of analytes in the chromatographic column and can be used to make predictions for a structurally diverse set of analytes if their log P and pKa values are known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography, 2nd ed. New York: John Wiley & Sons, Inc.; 2009.

    Book  Google Scholar 

  2. Nikitas P, Pappa-Louisi A. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. Journal of chromatography. A 2009;1216(10):1737–1755. https://doi.org/10.1016/j.chroma.2008.09.051

    Article  CAS  PubMed  Google Scholar 

  3. Neue UD. Nonlinear Retention Relationships in Reversed-Phase Chromatography. Chromatographia 2006;63(S13):S45–S53. https://doi.org/10.1365/s10337-006-0718-9, http://www.springerlink.com/index/10.1365/s10337-006-0718-9.

    Article  CAS  Google Scholar 

  4. Gelman A. Multilevel (Hierarchical) Modeling: What It Can and Cannot Do. Technometrics 2006; 48(3):432–435. https://doi.org/10.1198/004017005000000661.

    Article  Google Scholar 

  5. Hox J. Multilevel analysis: Techniques and applications, 2nd ed. New York: Routledge; 2010.

    Book  Google Scholar 

  6. Stangl DK. Prediction and decision making using Bayesian hierarchical models. Stat Med 1995; 14(20):2173–2190.

    Article  CAS  PubMed  Google Scholar 

  7. Wiczling P. Analyzing chromatographic data using multilevel modeling. Anal Bioanal Chem 2018; 410(16):3905–3915. https://doi.org/10.1007/s00216-018-1061-3.

    Article  CAS  PubMed  Google Scholar 

  8. Haddad PR, Taraji M, Szücs R. Prediction of Analyte Retention Time in Liquid Chromatography. Anal Chem 2021;93(1):228–256. https://doi.org/10.1021/acs.analchem.0c04190.

    Article  CAS  PubMed  Google Scholar 

  9. Bouwmeester R, Gabriels R, Hulstaert N, Martens L, Degroeve S. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nat Methods 2021;18(11):1363–1369. https://doi.org/10.1038/s41592-021-01301-5.

    Article  PubMed  Google Scholar 

  10. Giese S H, Sinn L R, Wegner F, Rappsilber J. Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry. Nat Commun 2021;12(1):3237. https://doi.org/10.1038/s41467-021-23441-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McElreath R. 2016. Statistical rethinking: a bayesian course with examples in r and stan.

  12. Gelman A, Simpson D, Betancourt M. The prior can often only be understood in the context of the likelihood. Entropy 2017;19(10):555. https://doi.org/10.4324/9781315650982.

    Article  Google Scholar 

  13. Boswell PG, Schellenberg JR, Carr PW, Cohen JD, Hegeman AD. Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles. J Chromatogr A 2011;1218(38):6742–6749. https://doi.org/10.1016/J.CHROMA.2011.07.070, https://www.sciencedirect.com/science/article/abs/pii/S0021967311011095?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  14. Boswell PG, Schellenberg JR, Carr PW, Cohen JD, Hegeman AD. A study on retention ‘projection’ as a supplementary means for compound identification by liquid chromatography?mass spectrometry capable of predicting-retention with different gradients, flow rates, and instruments. J Chromatogr A 2011;1218(38):6732–6741. https://doi.org/10.1016/J.CHROMA.2011.07.105, https://www.sciencedirect.com/science/article/abs/pii/S0021967311011447?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  15. Kruschke JK. Doing bayesian data analysis: A tutorial with r, jags, and stan, 2nd ed. London: Academic Press; 2014.

    Google Scholar 

  16. Hoffman MD, Gelman A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 2014;15(1):1593–1623.

    Google Scholar 

  17. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A. Stan: A probabilistic programming language. Journal of Statistical Software, Articles 2017;76(1):1–32. https://doi.org/10.18637/jss.v076.i01.

    Google Scholar 

  18. Stan Development Team. 2021. RStan: the R interface to Stan. https://mc-stan.org/, R package version 2.21.3.

  19. Margossian C, Gillespie B. 2017. Differential equations based models in stan. https://mc-stan.org/events/stancon2017-notebooks/stancon2017-margossian-gillespie-ode.html.

  20. Kubik L, Kaliszan R, Wiczling P. Analysis of Isocratic-Chromatographic-Retention Data using Bayesian Multilevel Modeling. Anal Chem 2018;90(22):13670–13679. https://doi.org/10.1021/acs.analchem.8b04033.

    Article  CAS  PubMed  Google Scholar 

  21. Neue UD, Phoebe CH, Tran K, Cheng Y-F, Lu Z. Dependence of reversed-phase retention of ionizable analytes on pH, concentration of organic solvent and silanol activity. J Chromatogr A 2001; 925(1):49–67. https://doi.org/10.1016/S0021-9673(01)01009-3.

    Article  CAS  PubMed  Google Scholar 

  22. Pappa-Louisi A, Nikitas P, Balkatzopoulou P, Malliakas C. Two- and three-parameter equations for representation of retention data in reversed-phase liquid chromatography. J Chromatogr A 2004; 1033(1):29–41. https://doi.org/10.1016/J.CHROMA.2004.01.021.

    Article  CAS  PubMed  Google Scholar 

  23. Gelman A, Hwang J, Vehtari A. Understanding predictive information criteria for Bayesian models. Stat Comput 2014; 24 (6): 997–1016. https://doi.org/10.1007/s11222-013-9416-2, http://link.springer.com/10.1007/s11222-013-9416-2.

    Article  Google Scholar 

  24. Vehtari A, Gelman A, Gabry J. Practical bayesian model evaluation using leave-one-out cross-validation and waic. Stat Comput 2017;27:1413–1432.

    Article  Google Scholar 

  25. Hanai T. Structure---retention correlation in liquid chromatography. J Chromatogr A 1991;550:313–324. https://doi.org/10.1016/S0021-9673(01)88547-2, http://www.sciencedirect.com/science/article/pii/S0021967301885472.

    Article  CAS  Google Scholar 

  26. Gritti F, Guiochon G. Adsorption Mechanism in RPLC. Effect of the Nature of the Organic Modifier. Anal Chem 2005;77(13):4257–4272. https://doi.org/10.1021/ac0580058.

    Article  CAS  PubMed  Google Scholar 

  27. Royal Society of Chemistry. 2021. CSID:2015292. https://www.chemspider.com/Chemical-Structure.2015292.html.

  28. Wiczling P, Kamedulska A, Kubik L. Application of Bayesian Multilevel Modeling in the Quantitative Structure---Retention Relationship Studies of Heterogeneous Compounds. Anal Chem 2021;93(18):6961–6971. https://doi.org/10.1021/acs.analchem.0c05227.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by (i) the project POWR.03.02.00-00-I035/16-00 co-financed by the European Union through the European Social Fund under the Operational Programme Knowledge Education Development 2014–2020 and (ii) the National Science Centre, Poland (grant 2015/18/E/ST4/00449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Wiczling.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 645 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamedulska, A., Kubik, Ł. & Wiczling, P. Statistical analysis of isocratic chromatographic data using Bayesian modeling. Anal Bioanal Chem 414, 3471–3481 (2022). https://doi.org/10.1007/s00216-022-03968-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03968-x

Keywords

Navigation