Skip to main content
Log in

Hydrogel-based holographic sensors and biosensors: past, present, and future

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hydrogel-based holographic sensors consist of a holographic pattern in a responsive hydrogel that diffracts light at different wavelengths depending on the dimensions and refractive index changes in the material. The material composition of hydrogels can be designed to be specifically responsive to different stimuli, and thus the diffraction pattern can correlate with the amount of analyte. According to this general principle, different approaches have been implemented to achieve label-free optical sensors and biosensors, with advantages such as easy fabrication or naked-eye detection. A review on the different approaches, sensing materials, measurement principles, and detection setups, and future perspectives is offered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Biomarkers. 2008;13:637–57. https://doi.org/10.1080/13547500802645905.

    Article  CAS  PubMed  Google Scholar 

  2. Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E. Smart wearable systems: Current status and future challenges. Artif Intell Med. 2012;56:137–56. https://doi.org/10.1016/J.ARTMED.2012.09.003.

    Article  PubMed  Google Scholar 

  3. Yetisen AK, Martinez-Hurtado JL, Ünal B, Khademhosseini A, Butt H. Wearables in Medicine. Adv Mater. 2018;30:1706910. https://doi.org/10.1002/adma.201706910.

    Article  CAS  PubMed Central  Google Scholar 

  4. Yang T, Chen S, He X, Guo H, Sun X. How to convincingly measure low concentration samples with optical label-free biosensors. Sensors Actuators B Chem. 2020;306:127568. https://doi.org/10.1016/j.snb.2019.127568.

    Article  CAS  Google Scholar 

  5. Bañuls M-J, Puchades R, Maquieira Á. Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: A review. Anal Chim Acta. 2013;777:1–16. https://doi.org/10.1016/j.aca.2013.01.025.

    Article  CAS  PubMed  Google Scholar 

  6. Khansili N, Rattu G, Krishna PM. Label-free optical biosensors for food and biological sensor applications. Sensors Actuators B Chem. 2018;265:35–49. https://doi.org/10.1016/j.snb.2018.03.004.

    Article  CAS  Google Scholar 

  7. Casquel R, Holgado M, Laguna MF, Hernández AL, Santamaría B, Lavín Á, Tramarin L, Herreros P. Engineering vertically interrogated interferometric sensors for optical label-free biosensing. Anal Bioanal Chem. 2020;412:3285–97. https://doi.org/10.1007/s00216-020-02411-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vermonden T, Censi R, Hennink WE. Hydrogels for Protein Delivery. Chem Rev. 2012;112:2853–88. https://doi.org/10.1021/cr200157d.

    Article  CAS  Google Scholar 

  9. Tavakoli J, Tang Y. Hydrogel based sensors for biomedical applications: An updated review. Polymers. 2017;9:364. https://doi.org/10.3390/polym9080364.

    Article  CAS  PubMed Central  Google Scholar 

  10. Sun X, Agate S, Salem KS, Lucia L, Pal L. Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications - A Review. ACS Appl Bio Mater. 2021;4:140–62. https://doi.org/10.1021/acsabm.0c01011.

    Article  CAS  Google Scholar 

  11. Gačanin J, Synatschke CV, Weil T. Biomedical Applications of DNA-Based Hydrogels. Adv Funct Mater. 2020;30:1906253. https://doi.org/10.1002/adfm.201906253.

    Article  CAS  Google Scholar 

  12. Distler T, Polley C, Shi F, Schneidereit D, Ashton MD, Friedrich O, Kolb JF, Hardy JG, Detsch R, Seitz H, Boccaccini AR. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. Adv Healthc Mater. 2021;10:2001876. https://doi.org/10.1002/adhm.202001876.

    Article  CAS  Google Scholar 

  13. Balavigneswaran CK, Muthuvijayan V. Nanohybrid-Reinforced Gelatin-Ureidopyrimidinone-Based Self-healing Injectable Hydrogels for Tissue Engineering Applications. ACS Appl Bio Mater. 2021. https://doi.org/10.1021/acsabm.1c00458.

  14. Zhu Y, Zhang J, Song J, Yang J, Du Z, Zhao W, Guo H, Wen C, Li Q, Sui X, Zhang L. A Multifunctional Pro-Healing Zwitterionic Hydrogel for Simultaneous Optical Monitoring of pH and Glucose in Diabetic Wound Treatment. Adv Funct Mater. 2020;30:1905493. https://doi.org/10.1002/adfm.201905493.

    Article  CAS  Google Scholar 

  15. Erdem A. Preparation and characterization of rapid temperature responsive cationic comb-type grafted POE-POP based hydrogel as prospective excellent actuators/sensors. Colloids Surfaces A Physicochem Eng Asp. 2020;607:125523. https://doi.org/10.1016/j.colsurfa.2020.125523.

    Article  CAS  Google Scholar 

  16. Zhu Y, Lin L, Chen Y, Song Y, Lu W, Guo Y. A self-healing, robust adhesion, multiple stimuli-response hydrogel for flexible sensors. Soft Matter. 2020;16:2238–48. https://doi.org/10.1039/c9sm02303h.

    Article  CAS  PubMed  Google Scholar 

  17. Bhat A, Amanor-Boadu JM, Guiseppi-Elie A. Toward Impedimetric Measurement of Acidosis with a pH-Responsive Hydrogel Sensor. ACS Sensors. 2020;5:500–9. https://doi.org/10.1021/acssensors.9b02336.

    Article  CAS  PubMed  Google Scholar 

  18. Dautta M, Alshetaiwi M, Escobar J, Tseng P. Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators. Biosens Bioelectron. 2020;151:112004. https://doi.org/10.1016/j.bios.2020.112004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buenger D, Topuz F, Groll J. Hydrogels in sensing applications. Prog Polym Sci. 2012;37:1678–719. https://doi.org/10.1016/j.progpolymsci.2012.09.001.

    Article  CAS  Google Scholar 

  20. Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Appl Bio Mater. 2021;4:85–121. https://doi.org/10.1021/acsabm.0c00807.

    Article  CAS  Google Scholar 

  21. Sun X, Yao F, Li J. Nanocomposite hydrogel-based strain and pressure sensors: A review. J Mater Chem A. 2020;8:18605–23. https://doi.org/10.1039/d0ta06965e.

    Article  CAS  Google Scholar 

  22. Wang L, Xu T, Zhang X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends Anal Chem. 2021;134:116130. https://doi.org/10.1016/j.trac.2020.116130.

    Article  CAS  Google Scholar 

  23. Dhanjai SA, Kalambate PK, Mugo SM, Kamau P, Chen J, Jain R. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. TrAC - Trends Anal Chem. 2019;118:488–501. https://doi.org/10.1016/j.trac.2019.06.014.

    Article  CAS  Google Scholar 

  24. Distler T, Boccaccini AR. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors – A review. Acta Biomater. 2020;101:1–13. https://doi.org/10.1016/j.actbio.2019.08.044.

    Article  CAS  PubMed  Google Scholar 

  25. Fu F, Wang J, Zeng H, Yu J. Functional Conductive Hydrogels for Bioelectronics. ACS Mater Lett. 2020;2:1287–301. https://doi.org/10.1021/acsmaterialslett.0c00309.

    Article  CAS  Google Scholar 

  26. Xu J, Tsai YL, Hsu SH. Design Strategies of Conductive Hydrogel for Biomedical Applications. Molecules. 2020;25:5296. https://doi.org/10.3390/molecules25225296.

    Article  CAS  PubMed Central  Google Scholar 

  27. Deng Z, Yu R, Guo B. Stimuli-responsive conductive hydrogels: Design, properties, and applications. Mater Chem Front. 2021;5:2092–123. https://doi.org/10.1039/d0qm00868k.

    Article  CAS  Google Scholar 

  28. Kuddushi M, Ray D, Aswal V, Hoskins C, Malek N. Poly(vinyl alcohol) and Functionalized Ionic Liquid-Based Smart Hydrogels for Doxorubicin Release. ACS Appl Bio Mater. 2020;3:4883–94. https://doi.org/10.1021/acsabm.0c00393.

    Article  CAS  Google Scholar 

  29. Zhao W, Zhu Y, Zhang J, Xu T, Li Q, Guo H, Zhang J, Lin C, Zhang L. A comprehensive study and comparison of four types of zwitterionic hydrogels. J Mater Sci. 2018;53:13813–25. https://doi.org/10.1007/s10853-018-2535-6.

    Article  CAS  Google Scholar 

  30. Jang J, Seol YJ, Kim HJ, Kundu J, Kim SW, Cho DW. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. J Mech Behav Biomed Mater. 2014;37:69–77. https://doi.org/10.1016/j.jmbbm.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  31. Pedron S, Pritchard AM, Vincil GA, Andrade B, Zimmerman SC, Harley BAC. Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness. Biomacromolecules. 2017;18:1393–400. https://doi.org/10.1021/acs.biomac.7b00118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding N, Cai X, Zhang P, Dong S, Du B, Nie J, Yu P. Mimicking the Mechanical Properties of Cartilage Using Ionic- And Hydrogen-Bond Cross-Linked Hydrogels with a High Equilibrium Water Content above 70%. ACS Appl Polym Mater. 2021. https://doi.org/10.1021/acsapm.1c00264.

  33. Utech S, Boccaccini AR. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci. 2016;51:271–310. https://doi.org/10.1007/s10853-015-9382-5.

    Article  CAS  Google Scholar 

  34. Deng Z, Li M, Hu Y, He Y, Tao B, Yuan Z, Wang R, Chen M, Luo Z, Cai K. Injectable biomimetic hydrogels encapsulating Gold/metal–organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chem Eng J. 2021;420:129668. https://doi.org/10.1016/j.cej.2021.129668.

    Article  CAS  Google Scholar 

  35. Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater. 2021;122:1–25. https://doi.org/10.1016/j.actbio.2020.12.030.

    Article  CAS  PubMed  Google Scholar 

  36. Lakes AL, Peyyala R, Ebersole JL, Puleo DA, Hilt JZ, Dziubla TD. Synthesis and characterization of an antibacterial hydrogel containing covalently bound vancomycin. Biomacromolecules. 2014;15:3009–18. https://doi.org/10.1021/bm5006323.

    Article  CAS  PubMed  Google Scholar 

  37. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S. Superabsorbent hydrogel composites and nanocomposites: A review. Polym Compos. 2011;32:277–89.

    Article  CAS  Google Scholar 

  38. Pont G, Chen L, Spiller DG, Adams DJ. The effect of polymer additives on the rheological properties of dipeptide hydrogelators. Soft Matter. 2012;8:7797–802. https://doi.org/10.1039/c2sm25918d.

    Article  CAS  Google Scholar 

  39. Pal AK, Labella E, Goddard NJ, Gupta R. Photofunctionalizable Hydrogel for Fabricating Volume Optical Diffractive Sensors. Macromol Chem Phys. 2019;220:1–8. https://doi.org/10.1002/macp.201900228.

    Article  CAS  Google Scholar 

  40. Millington RB, Mayes AG, Blyth J, Lowe CR. A Holographic Sensor for Proteases. Anal Chem. 1995;67:4229–33. https://doi.org/10.1021/ac00119a004.

    Article  Google Scholar 

  41. Ye G, Wang X. Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups. Biosens Bioelectron. 2010;26:772–7. https://doi.org/10.1016/j.bios.2010.06.029.

    Article  CAS  PubMed  Google Scholar 

  42. Yetisen AK, Naydenova I, Da Cruz VF, Blyth J, Lowe CR. Holographic sensors: Three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev. 2014;114:10654–96. https://doi.org/10.1021/cr500116a.

    Article  CAS  PubMed  Google Scholar 

  43. Davies S, Hu Y, Jiang N, Blyth J, Kaminska M, Liu Y, Yetisen AK. Holographic Sensors in Biotechnology. Adv Funct Mater. 2021:2105645. https://doi.org/10.1002/adfm.202105645.

  44. Lu C, Lipson RH. Interference lithography: A powerful tool for fabricating periodic structures. Laser Photonics Rev. 2010;4:568–80. https://doi.org/10.1002/lpor.200810061.

    Article  CAS  Google Scholar 

  45. Asher SA, Holtz J, Liu L, Wu Z. Self-Assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays. J Am Chem Soc. 1994;116:4997–8.

    Article  CAS  Google Scholar 

  46. Holtz JH, Asher SA. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature. 1997;389:829–32. https://doi.org/10.1038/39834.

    Article  CAS  PubMed  Google Scholar 

  47. Holtz JH, Holtz JSW, Munro CH, Asher SA. Intelligent Polymerized Crystalline Colloidal Arrays: Novel Chemical Sensor Materials. Anal Chem. 1998;70:780–91. https://doi.org/10.1021/ac970853i.

    Article  CAS  Google Scholar 

  48. Zhang JT, Chao X, Liu X, Asher SA. Two-dimensional array debye ring diffraction protein recognition sensing. Chem Commun. 2013;49:6337–9. https://doi.org/10.1039/c3cc43396j.

    Article  CAS  Google Scholar 

  49. Zhang JT, Cai Z, Kwak DH, Liu X, Asher SA. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin a. Anal Chem. 2014;86:9036–41. https://doi.org/10.1021/ac5015854.

    Article  CAS  PubMed  Google Scholar 

  50. Cai Z, Kwak DH, Punihaole D, Hong Z, Velankar SS, Liu X, Asher SA. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans. Angew Chem Int Ed. 2015;54:13036–40. https://doi.org/10.1002/anie.201506205.

    Article  CAS  Google Scholar 

  51. Cai Z, Sasmal A, Liu X, Asher SA. Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection. ACS Sensors. 2017;2:1474–81. https://doi.org/10.1021/acssensors.7b00426.

    Article  CAS  PubMed  Google Scholar 

  52. Lee K, Asher SA. Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc. 2000;122:9534–7. https://doi.org/10.1021/ja002017n.

    Article  CAS  Google Scholar 

  53. Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CS, Finegold DN. Photonic crystal carbohydrate sensors: Low ionic strength sugar sensing. J Am Chem Soc. 2003;125:3322–9. https://doi.org/10.1021/ja021037h.

    Article  CAS  PubMed  Google Scholar 

  54. Alexeev VL, Sharma AC, Goponenko AV, Das S, Lednev IK, Wilcox CS, Finegold DN, Asher SA. High ionic strength glucose-sensing photonic crystal. Anal Chem. 2003;75:2316–23. https://doi.org/10.1021/ac030021m.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma AC, Jana T, Kesavamoorthy R, Shi L, Virji MA, Finegold DN, Asher SA. A General Photonic Crystal Sensing Motif: Creatinine in Bodily Fluids. J Am Chem Soc. 2004;126:2971–7. https://doi.org/10.1021/ja038187s.

    Article  CAS  PubMed  Google Scholar 

  56. Lippmann G. Sur la théorie de la photographie des couleurs simples et composées par la méthode interférentielle. J Phys Théorique Appliquée. 1894;3:97–107. https://doi.org/10.1051/jphystap:01894003009700.

    Article  Google Scholar 

  57. Blyth J, Millington RB, Mayes AG, Lowe CR. A diffusion method for making silver bromide based holographic recording material. Imaging Sci J. 1999;47:87–91. https://doi.org/10.1080/13682199.1999.11736459.

    Article  CAS  Google Scholar 

  58. Yetisen AK, Butt H, da Cruz VF, Montelongo Y, Davidson CAB, Blyth J, Chan L, Carmody JB, Vignolini S, Steiner U, Baumberg JJ, Wilkinson TD, Lowe CR. Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Opt Mater. 2014;2:250–4. https://doi.org/10.1002/adom.201300375.

    Article  CAS  Google Scholar 

  59. Vezouviou E, Lowe CR. A near infrared holographic glucose sensor. Biosens Bioelectron. 2015;68:371–81. https://doi.org/10.1016/j.bios.2015.01.014.

    Article  CAS  PubMed  Google Scholar 

  60. Oliveira NCL, El Khoury G, Versnel JM, Moghaddam GK, Leite LS, Lima-Filho JL, Lowe CR. A holographic sensor based on a biomimetic affinity ligand for the detection of cocaine. Sensors Actuators B Chem. 2018;270:216–22. https://doi.org/10.1016/j.snb.2018.05.009.

    Article  CAS  Google Scholar 

  61. Alqattan B, Yetisen AK, Butt H. Direct Laser Writing of Nanophotonic Structures on Contact Lenses. ACS Nano. 2018;12:5130–40. https://doi.org/10.1021/acsnano.8b00222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yetisen AK, Qasim MM, Nosheen S, Wilkinson TD, Lowe CR. Pulsed laser writing of holographic nanosensors. J Mater Chem C. 2014;2:3569–76. https://doi.org/10.1039/c3tc32507e.

    Article  CAS  Google Scholar 

  63. Ye G, Wang X. Polymer diffraction gratings on stimuli-responsive hydrogel surfaces: Soft-lithographic fabrication and optical sensing properties. Sensors Actuators B Chem. 2010;147:707–13. https://doi.org/10.1016/j.snb.2010.03.052.

    Article  CAS  Google Scholar 

  64. Ye G, Yang C, Wang X. Sensing diffraction gratings of antigenresponsive hydrogel for human immunoglobulin-G detection. Macromol Rapid Commun. 2010;31:1332–6. https://doi.org/10.1002/marc.201000082.

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Wang X. Aptamer-functionalized hydrogel diffraction gratings for the human thrombin detection. Chem Commun. 2013;49:5957–9. https://doi.org/10.1039/c3cc41827h.

    Article  CAS  Google Scholar 

  66. Wang X, Wang X, Liu X. Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel. Sensors Actuators B Chem. 2014;204:611–6. https://doi.org/10.1016/j.snb.2014.08.013.

    Article  CAS  Google Scholar 

  67. Li X, Tang B, Wu B, Hsu C, Wang X. Highly Sensitive Diffraction Grating of Hydrogels as Sensors for Carbon Dioxide Detection. Ind Eng Chem Res. 2021;60:4639–49. https://doi.org/10.1021/acs.iecr.1c00211.

    Article  CAS  Google Scholar 

  68. Lucío MI, Hernández Montoto A, Fernández E, Alamri S, Kunze T, Bañuls M-J, Maquieira Á. Label-free detection of C-Reactive protein using bioresponsive hydrogel-based surface relief diffraction gratings. Biosens Bioelectron. 2021;193:113561. https://doi.org/10.1016/j.bios.2021.113561.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao JJ, Wang W, Wang W, Wang F, Zhao Y, Cai QW, Xie R, Xie R, Ju XJ, Ju XJ, Liu Z, Liu Z, Faraj Y, Faraj Y, Chu LY. Smart Hydrogel Grating Immunosensors for Highly Selective and Sensitive Detection of Human-IgG. Ind Eng Chem Res. 2020;59:10469–75. https://doi.org/10.1021/acs.iecr.0c00780.

    Article  CAS  Google Scholar 

  70. Millington RB, Mayes AG, Blyth J, Lowe CR (1995) A Holographic Biosensor. Proc Int Solid-State Sensors Actuators Conf - TRANSDUCERS ’95 1:509–512. https://doi.org/10.1109/SENSOR.1995.717267

  71. Blyth J, Millington RB, Mayes AG, Frears ER, Lowe CR. Holographic sensor for water in solvents. Anal Chem. 1996;68:1089–94. https://doi.org/10.1021/ac9509115.

    Article  CAS  PubMed  Google Scholar 

  72. Lee MC, Kabilan S, Hussain A, Yang X, Blyth J, Lowe CR. Glucose-sensitive holographic sensors for monitoring bacterial growth. Anal Chem. 2004;76:5748–55. https://doi.org/10.1021/ac049334n.

    Article  CAS  PubMed  Google Scholar 

  73. Kabilan S, Blyth J, Lee MC, Marshall AJ, Hussain A, Yang X, Lowe CR. Glucose-sensitive holographic sensors. J Mol Recognit. 2004;17:162–6. https://doi.org/10.1002/jmr.663.

    Article  CAS  PubMed  Google Scholar 

  74. Kabilan S, Marshall AJ, Blyth J, Hussain A, Yang X, Lee MC, Lowe CR. Selective holographic glucose sensors. Proc IEEE Sensors. 2004;2:1003–6. https://doi.org/10.1109/icsens.2004.1426342.

    Article  Google Scholar 

  75. Jiang N, Davies S, Jiao Y, Blyth J, Butt H, Montelongo Y, Yetisen AK. Doubly Photopolymerized Holographic Sensors. ACS Sensors. 2021;6:915–24. https://doi.org/10.1021/acssensors.0c02109.

    Article  CAS  PubMed  Google Scholar 

  76. Marshall AJ, Young DS, Blyth J, Kabilan S, Lowe CR. Metabolite-Sensitive Holographic Biosensors. Anal Chem. 2004;76:1518–23. https://doi.org/10.1021/ac030357w.

    Article  CAS  PubMed  Google Scholar 

  77. Marshall AJ, Blyth J, Davidson CAB, Lowe CR. pH-Sensitive Holographic Sensors. Anal Chem. 2003;75:4423–31. https://doi.org/10.1021/ac020730k.

    Article  CAS  PubMed  Google Scholar 

  78. Mayes AG, Blyth J, Millington RB, Lowe CR. Metal ion-sensitive holographic sensors. Anal Chem. 2002;74:3649–57. https://doi.org/10.1021/ac020131d.

    Article  CAS  PubMed  Google Scholar 

  79. Madrigal González B, Christie G, Davidson CAB, Blyth J, Lowe CR. Divalent metal ion-sensitive holographic sensors. Anal Chim Acta. 2005;528:219–28. https://doi.org/10.1016/j.aca.2004.03.029.

    Article  CAS  Google Scholar 

  80. Bell LL, Seshia AA, Davidson CAB, Lowe CR. Integration of holographic sensors into microfluidics for the real-time pH sensing of L. casei metabolism. Procedia Eng. 2010;5:1352–5. https://doi.org/10.1016/j.proeng.2010.09.365.

    Article  CAS  Google Scholar 

  81. Chan LCZ, Moghaddam GK, Wang Z, Lowe CR. Miniaturized ph holographic sensors for the monitoring of lactobacillus casei shirota growth in a microfluidic chip. ACS Sensors. 2019;4:456–63. https://doi.org/10.1021/acssensors.8b01470.

    Article  CAS  PubMed  Google Scholar 

  82. Bhatta D, Christie G, Madrigal-González B, Blyth J, Lowe CR. Holographic sensors for the detection of bacterial spores. Biosens Bioelectron. 2007;23:520–7. https://doi.org/10.1016/j.bios.2007.06.006.

    Article  CAS  PubMed  Google Scholar 

  83. Tan EV, Lowe CR. Holographic enzyme inhibition assays for drug discovery. Anal Chem. 2009;81:7579–89. https://doi.org/10.1021/ac9008989.

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Appl Phys Lett. 2002;81:4121–3. https://doi.org/10.1063/1.1525391.

    Article  CAS  Google Scholar 

  85. Tomita Y, Nishibiraki H. Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes. Appl Phys Lett. 2003;83:410–2. https://doi.org/10.1063/1.1593816.

    Article  CAS  Google Scholar 

  86. Cody D, Gul S, Mikulchyk T, Irfan M, Kharchenko A, Goldyn K, Martin S, Mintova S, Cassidy J, Naydenova I. Self-processing photopolymer materials for versatile design and fabrication of holographic sensors and interactive holograms. Appl Opt. 2018;57:E173. https://doi.org/10.1364/ao.57.00e173.

    Article  CAS  PubMed  Google Scholar 

  87. Leite E, Babeva T, Ng EP, Toal V, Mintova S, Naydenova I. Optical properties of photopolymer layers doped with aluminophosphate nanocrystals. J Phys Chem C. 2010;114:16767–75. https://doi.org/10.1021/jp1060073.

    Article  CAS  Google Scholar 

  88. Eich M, Reck B, Ringsdorf H, Wendorff JH. Reversible Digital And Holographic Optical Storafe In Polymeric Liquid Crystals (PLC). Mol Polym Optoelectron Mater. 1987;0682:93. https://doi.org/10.1117/12.939643.

    Article  CAS  Google Scholar 

  89. Kabilan S, Marshall AJ, Sartain FK, Lee MC, Hussain A, Yang X, Blyth J, Karangu N, James K, Zeng J, Smith D, Domschke A, Lowe CR. Holographic glucose sensors. Biosens Bioelectron. 2005;20:1602–10. https://doi.org/10.1016/j.bios.2004.07.005.

    Article  CAS  PubMed  Google Scholar 

  90. Horgan AM, Marshall AJ, Kew SJ, Dean KES, Creasey CD, Kabilan S. Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. Biosens Bioelectron. 2006;21:1838–45. https://doi.org/10.1016/j.bios.2005.11.028.

    Article  CAS  PubMed  Google Scholar 

  91. Yang X, Lee M, Sartain F, Pan X, Lowe CR. Designed Boronate Ligands for Glucose-Selective Holographic Sensors. Chem - A Eur J. 2006;12:8491–7. https://doi.org/10.1002/chem.200600442.

    Article  CAS  Google Scholar 

  92. Yetisen AK, Montelongo Y, Da Cruz VF, Martinez-Hurtado JL, Neupane S, Butt H, Qasim MM, Blyth J, Burling K, Carmody JB, Evans M, Wilkinson TD, Kubota LT, Monteiro MJ, Lowe CR. Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett. 2014;14:3587–93. https://doi.org/10.1021/nl5012504.

    Article  CAS  PubMed  Google Scholar 

  93. Elsherif M, Hassan MU, Yetisen AK, Butt H. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones. ACS Nano. 2018;12:5452–62. https://doi.org/10.1021/acsnano.8b00829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bajgrowicz-Cieslak M, Alqurashi Y, Elshereif MI, Yetisen AK, Hassan MU, Butt H. Optical glucose sensors based on hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films. RSC Adv. 2017;7:53916–24. https://doi.org/10.1039/c7ra11184c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Khalili Moghaddam G, Margerison H, Suzuki J, Blyth J, Lowe CR. A transparent glucose-sensitive double polymerised holographic sensor. Sensors Actuators B Chem. 2018;267:1–4. https://doi.org/10.1016/j.snb.2018.04.009.

    Article  CAS  Google Scholar 

  96. Khalili Moghaddam G, Lowe CR. Smartphone-based quantitative measurements on holographic sensors. PLoS One. 2017;12:1–21. https://doi.org/10.1371/journal.pone.0187467.

    Article  CAS  Google Scholar 

  97. Mayes AG, Blyth J, Millington RB, Lowe CR. A holographic sensor based on a rationally designed synthetic polymer. J Mol Recognit. 1998;11:168–74. https://doi.org/10.1002/(SICI)1099-1352(199812)11:1/6<168::AID-JMR415>3.0.CO;2-C.

  98. Mayes AG, Blyth J, Kyröläinen-Reay M, Millington RB, Lowe CR. A holographic alcohol sensor. Anal Chem. 1999;71:3390–6. https://doi.org/10.1021/ac990045m.

    Article  CAS  Google Scholar 

  99. Yang X, Pan X, Blyth J, Lowe CR. Towards the real-time monitoring of glucose in tear fluid: Holographic glucose sensors with reduced interference from lactate and pH. Biosens Bioelectron. 2008;23:899–905. https://doi.org/10.1016/j.bios.2007.09.016.

    Article  CAS  PubMed  Google Scholar 

  100. Blaya S, Mallavia R, Carretero L, Fimia A, Madrigal RF. Highly sensitive photopolymerizable dry film for use in real time holography. Appl Phys Lett. 1998;73:1628–30. https://doi.org/10.1063/1.122227.

    Article  CAS  Google Scholar 

  101. Mallavia R, Fimia A, Blaya S, Carretero L, Madrigal RF, Amat-guerri F, Sastre R. A mixture of mono-, bi- and trifunctional acrylates with eosine O-benzoyl-α-oxooxime: Advances in holographic copolymerizable composition. J Mod Opt. 1999;46:559–66. https://doi.org/10.1080/09500349908231284.

    Article  CAS  Google Scholar 

  102. Fimia A, Mateos F, Mallavia R, Blaya S, Beléndez A, Sastre R, Amat-guerri F. High-energy sensitivity enhancement in panchromatic photopolymers for holography using a mixture of visiblelight photoinitiators. J Mod Opt. 1999;46:1091–8. https://doi.org/10.1080/09500349908230402.

    Article  CAS  Google Scholar 

  103. Fimia A, Mateos F, Carretero L, Blaya Escarre S, Garzón M, Beléndez A, Madrigal R, Ulibarrena M, Levi Miguel D. Optimización de un material de registro holográfico para almacenamiento óptico de la información. Boletín la Soc Española Cerámica y Vidr. 1997;36:259–61.

    CAS  Google Scholar 

  104. Sugawara S, Murase K, Kitayama T. Holographic Recording by Dye-Sensitized Photopolymerization of Acrylamide. Appl Opt. 1975;14:378. https://doi.org/10.1364/ao.14.000378.

    Article  CAS  PubMed  Google Scholar 

  105. Rogers B, Martin S, Naydenova I. Study of the effect of methyldiethanolamine initiator on the recording properties of acrylamide based photopolymer. Polymers. 2020;12:1–12. https://doi.org/10.3390/POLYM12040734.

    Article  Google Scholar 

  106. Rana MM, Rajeev A, Natale G, De la Hoz SH. Effects of synthesis-solvent polarity on the physicochemical and rheological properties of poly(N-isopropylacrylamide) (PNIPAm) hydrogels. J Mater Res Technol. 2021;13:769–86. https://doi.org/10.1016/j.jmrt.2021.05.009.

    Article  CAS  Google Scholar 

  107. Moreno RO, Penott-Chang EK, Rojas de Gáscue B, Müller AJ. The effect of the solvent employed in the synthesis of hydrogels of poly (acrylamide-co-methyl methacrylate) on their structure, properties and possible biomedical applications. Eur Polym J. 2017;88:148–60. https://doi.org/10.1016/j.eurpolymj.2017.01.005.

    Article  CAS  Google Scholar 

  108. Bai W, Spivak DA. A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract. Angew Chem Int Ed. 2014;53:2095–8. https://doi.org/10.1002/anie.201309462.

    Article  CAS  Google Scholar 

  109. Collier RJ, Burckhardt CB, Lin LH. Introduction to basic concepts. In: Optical Holography. London: Academic Press; 1971. p. 3–33.

    Google Scholar 

  110. Naydenova I, Raghavendra J, Martin S, Toal V. Holographic Humidity Sensors. In: Okada CT, editor. Humidity Sensors. Dublin: Nova Science Publisher, Inc.; 2011. p. 177–42.

    Google Scholar 

  111. Kraiski AV, Mironova TV, Sultanov TT. Using digital camera as metering device in geometrical, spectral and intensity measurements. Proc Int Conf Adv Optoelectron Lasers, CAOL. 2013:327–9. https://doi.org/10.1109/CAOL.2013.6657625.

  112. Naydenova I, Jallapuram R, Toal V, Martin S. Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer. Sensors Actuators B Chem. 2009;139:35–8. https://doi.org/10.1016/j.snb.2008.08.020.

    Article  CAS  Google Scholar 

  113. Mikulchyk T, Martin S, Naydenova I. N-isopropylacrylamide-based photopolymer for holographic recording of thermosensitive transmission and reflection gratings. Appl Opt. 2017;56:6348. https://doi.org/10.1364/ao.56.006348.

    Article  CAS  PubMed  Google Scholar 

  114. Mikulchyk T, Martin S, Naydenova I. Humidity and temperature effect on properties of transmission gratings recorded in PVA/AA-based photopolymer layers. J Opt. 2013;15:105301. https://doi.org/10.1088/2040-8978/15/10/105301.

    Article  CAS  Google Scholar 

  115. Yu D, Liu H, Mao D, Geng Y, Wang W, Sun L, Lv J. Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer. Appl Opt. 2015;54:6804. https://doi.org/10.1364/ao.54.006804.

    Article  CAS  PubMed  Google Scholar 

  116. Jiao X, Liu H, Wang B, Wang R, Li L. Pressure-dependent diffraction spectrum response in photopolymer-based holographic sensor. Appl Opt. 2019;58:8302. https://doi.org/10.1364/ao.58.008302.

    Article  CAS  PubMed  Google Scholar 

  117. Wuest DR, Lakes RS. Color control in reflection holograms by humidity. Appl Opt. 1991;30:2363. https://doi.org/10.1364/AO.30.002363.

    Article  CAS  PubMed  Google Scholar 

  118. Naydenova I, Jallapuram R, Toal V, Martin S. A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer. Appl Phys Lett. 2008;92:31109. https://doi.org/10.1063/1.2837454.

    Article  CAS  Google Scholar 

  119. Yetisen AK, Butt H, Mikulchyk T, Ahmed R, Montelongo Y, Humar M, Jiang N, Martin S, Naydenova I, Yun SH. Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Security. Adv Opt Mater. 2016;4:1589–600. https://doi.org/10.1002/adom.201600162.

    Article  CAS  Google Scholar 

  120. Liu H, Yu D, Zhou K, Mao D, Liu L, Wang H, Wang W, Song Q. Temperature-induced spectrum response of volume grating as an effective strategy for holographic sensing in acrylamide polymer part I: sensing. Appl Opt. 2016;55:9907. https://doi.org/10.1364/ao.55.009907.

    Article  CAS  PubMed  Google Scholar 

  121. Liu H, Yu D, Zhou K, Wang S, Luo S, Wang W, Song Q. Improvement of temperature-induced spectrum characterization in a holographic sensor based on N-isopropylacrylamide photopolymer hydrogel. Appl Opt. 2017;56:9006. https://doi.org/10.1364/ao.56.009006.

    Article  CAS  PubMed  Google Scholar 

  122. Millington RB, Mayes AG, Blyth J, Lowe CR. A hologram biosensor for proteases. Sensors Actuators B Chem. 1996;33:55–9. https://doi.org/10.1016/0925-4005(96)01835-7.

    Article  CAS  Google Scholar 

  123. Dean KES, Horgan AM, Marshall AJ, Kabilan S, Pritchard J. Selective holographic detection of glucose using tertiary amines. Chem Commun. 2006:3507–9. https://doi.org/10.1039/b605778k.

  124. Worsley GJ, Tourniaire GA, Medlock KES, Sartain FK, Harmer HE, Thatcher M, Horgan AM, Pritchard J. Measurement of glucose in blood with a phenylboronic acid optical sensor. J Diabetes Sci Technol. 2008;2:213–20. https://doi.org/10.1177/193229680800200207.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sartain FK, Yang X, Lowe CR. Holographic Lactate Sensor. Anal Chem. 2006;78:5664–70. https://doi.org/10.1021/ac060416g.

    Article  CAS  PubMed  Google Scholar 

  126. Fuchs Y, Soppera O, Mayes AG, Haupt K. Holographic molecularly imprinted polymers for label-free chemical sensing. Adv Mater. 2013;25:566–70. https://doi.org/10.1002/adma.201203204.

    Article  CAS  PubMed  Google Scholar 

  127. Fuchs Y, Kunath S, Soppera O, Haupt K, Mayes AG. Molecularly imprinted silver-halide reflection holograms for label-free opto-chemical sensing. Adv Funct Mater. 2014;24:688–94. https://doi.org/10.1002/adfm.201301454.

    Article  CAS  Google Scholar 

  128. Daikuzono CM, Delaney C, Tesfay H, Florea L, Oliveira ON, Morrin A, Diamond D. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes. Analyst. 2017;142:1133–9. https://doi.org/10.1039/c6an02571d.

    Article  CAS  PubMed  Google Scholar 

  129. Tang Z, Fu Y, Ma Z. Multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 based on redox hydrogel. Biosens Bioelectron. 2017;91:299–305. https://doi.org/10.1016/j.bios.2016.12.049.

    Article  CAS  PubMed  Google Scholar 

  130. Li S, Yang M, Zhou W, Johnston TG, Wang R, Zhu J. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs. Appl Surf Sci. 2015;355:570–6. https://doi.org/10.1016/j.apsusc.2015.05.020.

    Article  CAS  Google Scholar 

  131. Liu R, Huang Y, Ma Y, Jia S, Gao M, Li J, Zhang H, Xu D, Wu M, Chen Y, Zhu Z, Yang C. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl Mater Interfaces. 2015;7:6982–90. https://doi.org/10.1021/acsami.5b01120.

    Article  CAS  PubMed  Google Scholar 

  132. Ebrahimi MMS, Laabei M, Jenkins ATA, Schönherr H. Autonomously Sensing Hydrogels for the Rapid and Selective Detection of Pathogenic Bacteria. Macromol Rapid Commun. 2015;36:2123–8. https://doi.org/10.1002/marc.201500485.

    Article  CAS  PubMed  Google Scholar 

  133. Peng HY, Wang W, Gao FH, Lin S, Ju XJ, Xie R, Liu Z, Faraj Y, Chu LY. Smart Hydrogel Gratings for Sensitive, Facile, and Rapid Detection of Ethanol Concentration. Ind Eng Chem Res. 2019;58:17833–41. https://doi.org/10.1021/acs.iecr.9b03395.

    Article  CAS  Google Scholar 

  134. Leite E, Naydenova I, Mintova S, Leclercq L, Toal V. Photopolymerizable nanocomposites for holographic recording and sensor application. Appl Opt. 2010;49:3652. https://doi.org/10.1364/AO.49.003652.

    Article  CAS  PubMed  Google Scholar 

  135. Yu D, Liu H, Mao D, Geng Y, Wang W, Sun L, Lv J. Enhancement of spectrum strength in holographic sensing in nanozeolites dispersed acrylamide photopolymer. Opt Express. 2015;23:29113. https://doi.org/10.1364/oe.23.029113.

    Article  CAS  PubMed  Google Scholar 

  136. Mao D, Geng Y, Liu H, Zhou K, Xian L, Yu D. Two-way shift of wavelength in holographic sensing of organic vapor in nanozeolites dispersed acrylamide photopolymer. Appl Opt. 2016;55:6212. https://doi.org/10.1364/ao.55.006212.

    Article  CAS  PubMed  Google Scholar 

  137. Cody D, Naydenova I. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing Part I: surface relief gratings. J Opt Soc Am A. 2017;34:2110. https://doi.org/10.1364/josaa.34.002110.

    Article  CAS  Google Scholar 

  138. Cody D, Naydenova I. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing Part II: volume gratings. J Opt Soc Am A. 2018;35:12. https://doi.org/10.1364/josaa.35.000012.

    Article  CAS  Google Scholar 

  139. Wang X, Wang X, Ye G. Hydrogel diffraction gratings functionalized with crown ether for heavy metal ion detection. Sensors Actuators B Chem. 2014;193:413–9. https://doi.org/10.1016/j.snb.2013.11.098.

    Article  CAS  Google Scholar 

  140. Peng HY, Wang W, Gao F, Lin S, Liu LY, Pu XQ, Liu Z, Ju XJ, Xie R, Chu LY. Ultrasensitive diffraction gratings based on smart hydrogels for highly selective and rapid detection of trace heavy metal ions. J Mater Chem C. 2018;6:11356–67. https://doi.org/10.1039/c8tc02347f.

    Article  CAS  Google Scholar 

  141. Yetisen AK, Montelongo Y, Qasim MM, Butt H, Wilkinson TD, Monteiro MJ, Yun SH. Photonic nanosensor for colorimetric detection of metal ions. Anal Chem. 2015;87:5101–8. https://doi.org/10.1021/ac504274q.

    Article  CAS  PubMed  Google Scholar 

  142. Marshall AJ, Young DS, Kabilan S, Hussain A, Blyth J, Lowe CR. Holographic sensors for the determination of ionic strength. Anal Chim Acta. 2004;527:13–20. https://doi.org/10.1016/j.aca.2004.08.029.

    Article  CAS  Google Scholar 

  143. Yetisen AK, Butt H, Yun S. Photonic Crystal Flakes. ACS Sensors. 2016;1:493–7. https://doi.org/10.1021/acssensors.6b00108.

    Article  CAS  Google Scholar 

  144. Sartain FK, Yang X, Lowe CR. Complexation of L-lactate with boronic acids: A solution and holographic analysis. Chem - A Eur J. 2008;14:4060–7. https://doi.org/10.1002/chem.200701911.

    Article  CAS  Google Scholar 

  145. Haigh JM, Hussain A, Mimmack ML, Lowe CR. Affinity ligands for immunoglobulins based on the multicomponent Ugi reaction. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:1440–52. https://doi.org/10.1016/j.jchromb.2009.03.010.

    Article  CAS  Google Scholar 

  146. Barrios CA, Zhenhe C, Navarro-Villoslada F, López-Romero D, Moreno-Bondi MC. Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor. Biosens Bioelectron. 2011;26:2801–4. https://doi.org/10.1016/j.bios.2010.11.009.

    Article  CAS  PubMed  Google Scholar 

  147. Jiang L, Liu C, Mayumi K, Kato K, Yokoyama H, Ito K. Highly Stretchable and Instantly Recoverable Slide-Ring Gels Consisting of Enzymatically Synthesized Polyrotaxane with Low Host Coverage. Chem Mater. 2018;30:5013–9. https://doi.org/10.1021/acs.chemmater.8b01208.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the E.U. FEDER, the Spanish Ministry of Economy and Competitiveness MINECO (AdBiHol- PID2019-110713RB-I00) and the Generalitat Valenciana (PROMETEO/2020/094). M. I. Lucío acknowledges MINECO for her Juan de la Cierva-formación and -incorporación grants (FJCI-2016-29593, IJC2018-035355-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-José Bañuls.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Supplementary Information

ESM 1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucío, M.I., Cubells-Gómez, A., Maquieira, Á. et al. Hydrogel-based holographic sensors and biosensors: past, present, and future. Anal Bioanal Chem 414, 993–1014 (2022). https://doi.org/10.1007/s00216-021-03746-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03746-1

Keywords

Navigation